E-mail Subscription

Enter your email address:

Delivered by FeedBurner

Syndicate RSS
Welcome

Mission Statement 

The purpose of FLAPS-2-APPROACH is two-fold:  To document the construction of a Boeing 737 flight simulator, and to act as a platform to share aviation-related articles pertaining to the Boeing 737; thereby, providing a source of inspiration and reference to like-minded individuals.

I am not a professional journalist.  Writing for a cross section of readers from differing cultures and languages with varying degrees of technical ability, can at times be challenging. I hope there are not too many spelling and grammatical mistakes.

 

Note:   I have NO affiliation with ANY manufacturer or reseller.  All reviews and content are 'frank and fearless' - I tell it as I see it.  Do not complain if you do not like what you read.

I use the words 'modules & panels' and 'CDU & FMC' interchangeably.  The definition of the acronym 'OEM' is Original Equipment Manufacturer (aka real aicraft part).

 

All funds are used to offset the cost of server and website hosting (Thank You...)

No advertising on this website - EVER!

 

Find more about Weather in Hobart, AU
Click for weather forecast

 

 

 

 

  FEEDBACK:  

If you see any errors or omissions, please contact me to correct the information. 

Journal Archive (Newest First)

Entries in FSX (72)

Wednesday
Mar082017

OEM B737 CDU Conversion - Introduction

One of the slower projects is the conversion of two B737 CDU units.  The two units were purchased from an aircraft scrap-yard in the US and were formally used in a Boeing 737 operated by United Airlines.  

LEFT:  Straight from United Airlines to me.  Two OEM CDU units.  The rear unit has already had its CRT display removed and is partially  'gutted' (click to enlarge).

The two CDUs came from an airframe of a B737-500, which in 2008 was retired along with other Boeing classics, due to United Airlines decision to adopt the Airbus A-320.

The rear of each unit has a chronometer showing the hours of use - one unit has 5130 hours while the other has 1630 hours.

The CDU presently used in the simulator is manufactured by Flight Deck Solutions (FDS) and although I have been pleased with its operation and reliability, there is little resemblance, other than appearance, to the OEM unit.

LEFT:  Detail of the keyboard and DIM knob.  Interestingly the DIM knob dims the actual screen and not the backlighting (click to enlarge).

The prominent difference is external build quality and the tactile feeling when depressing the keys on the keyboard; the keys don't wobble in their sockets, but are firm to press. 

There is also a strong audible click when a key is depressed.  Furthermore, the backlighting is evenly spread with each key evenly lit.

The OEM CDU is large and VERY heavy.  I was surprised at the weight - a good 6 kilograms.  Most of the weight is made up by the thick glass CRT display screen and other components that reside within the sturdy aluminium case.

LEFT:  The casing removed to show the electronic boards that are secured by lever clips.  Like anything OEM, the unit is made very well from solid components (click to enlarge).

Like the casing, the internal structure is also made from aluminium and has four rails to enable the electronic boards to be installed and secured into place. 

Whenever I look at anything OEM, I am amazed at the workmanship that has gone into producing the item; the CDU does not fall short in this area.

A myriad number of small screws hold together the aluminum casing that protects the internal components.  Not only screws are used, but also special miniature DZUS fasteners than enable the side of the casing to removed easily for maintenance.

Nomenclature

When discussing the CDU there are three similar terms that are often used interchangeably: CDU, FMC and FMS.  In this website, I use the terms CDU and FMC interchangeable which is not quite correct - let me explain.

LEFT:  Protective cover removed to show the main pin-out board, rear of the CRT display, power supply, and electronics.  These parts cause the CDU to be quite heavy.  The two Canon plugs  are just visible at the right of the picture enable connection to the aircraft. (click to enlarge to see detail).

The Control Display Unit (CDU) is the interface that the flight crew use to access and manipulate the data from the Flight Management Computer (FMC); it's basically a screen and keyboard.  The FMC in turn is but one part of a complex system called the Flight Management System (FMS).  The FMS is capable of four dimensional area navigation.  It is the FMS that contains the navigational database.

For those more military-minded, the CDU in military parlance is called a mission computer.

Aesthetic Differences

The CDU dates from 2008, therefore; it is not exactly identical to the CDU used in the Next Generation airframe, however, it is very close.

Main Differences - 500 series to NG

(i)    The dim knob is a slightly different shape;

(ii)   The display screen is rounded at the edges (the NG is more straight-edged);

(iii)   The absence of the horizontal white lines located on the inside edge of the display frame bezel; and,

(iv)   The display screen is different (cathode ray tube - CRT to liquid crystal display - LCD).

To a purist, these differences are probably important, and if so, you will have to contend with a reproduction CDU or pay an exorbitant amount for an NG unit. 

The OEM software that enables the CDU to function is not important as the functionality of the CDU is dictated by the avionics software (ProSim-AR).  This also holds true for the font type and colour.

LEFT:  Completely gutted.  All unnecessary and unusable electronic components have been removed.  These two CDU units will soon operate flawlessly with ProSim-AR and flight simulator (click to enlarge).

Converting the CDU

I am liaising with an Australian company that specialises in converting avionics components used in commercial flight simulators.  This company has had considerable experience converting B747 avionics and is keen to see if their expertise will similarly work with the B737.

In a second article, I will explain in more detail how the conversion was done, and examine some of the problems that needed to be resolved.  I also will discuss the mounting of the unit into the CDU bay. 

More photographs of the CDU are located in the image gallery.  Additional images will be added to the gallery in due course.

Glossary

OEM - Original Equipment Manufacture (aka reral aircraft part).

Friday
Feb102017

Troubleshooting Power Management Settings and Solving USB Disconnects 

Remember when all that was required to run flight simulator was one display monitor, joystick and a keyboard – those days are long gone.   

LEFT:  High-speed 5 volt powered USB hub.  This hub resides in the Throttle Interface Module (TIM).  Note ferrite choke. (click to enlarge).

Depending upon the level of system complexity, a flight simulator may require a dozen or more ports to connect peripheral items to a server or client computer (s).  Historically, connection of peripherals has been via USB.  

USB is an acronym for Universal Serial Bus and, generally speaking, if only a few peripherals are attached to a computer, there usually is not a problem with communication between the computer and the attached device.  However, as interface cards and peripherals become more complicated and numerous, there is a propensity for disconnects to occur more frequently.  A USB disconnect usually announces itself by the sound card playing the ‘ding-dong’ sound as the peripheral disconnects itself from the computer.

Guidelines (golden rules)

There are several ‘golden rules’ to remember when using USB.

(i)      Try and keep all USB cables as short as possible;
(ii)     Do not join USB cables together;
(iii)    Always use quality USB cables with quality connectors;
(iv)    Do not ‘kink’ the USB cable or wrap the cable so tightly that the wires are at a 90-degree angle;
(v)     Do not lie USB cables beside one another so they are touching, but maintain some space between them;
(vi)     Use a USB cable fitted with noise limiting nodes (NLN);
(vii)    Use a USB cable/port that is rated at the highest output (USB 3 or above); and,
(viii)   Where possible for multi USB connections use a quality powered USB hub.

Noise Limiting Node (NLN)

A noise limiting node (NLN), also known as a 'ferrite choke' is a small cylindrical node that sits at each end of a USB cable.  Briefly explained the nodes are made from a solid ball of ferrite which is magnetic and therefore quite heavy.

LEFT:  Ferrite choke on USB cable.

The purpose of the NLN is to stop electromagnetic interference (EMI) transferring from the peripheral to the computer.  EMI can be produced from any number of peripheral items and a USB cable running between the peripheral and the computer acts as an antenna, picking up and transmitting EMI current.  The current can, but not necessarily always, cause havoc with either the operation of the peripheral or the computer itself.  

Adding USB Ports

As the number of add-on peripherals increase, the number of available ports falls short and additional USB ports need to be added to the computer.  Additional ports can easily be added to a computer via a PCE card which enables (on average) an additional 4 USB ports to be added to your computer.  A PCI card is attached to your motherboard.

Power Requirements

One of the main reasons that USB disconnects occur, relates to the power that is available to the computer’s USB port.  Often the power requirements of the device will be greater than that provided to the USB port; this causes a disconnect.  Additionally, depending upon your computer, it is not uncommon for power to fluctuate between USB ports as the computer’s motherboard directs power to various processes.

Depending upon how your system is set-up, when several devices 'come on line' a minor spike can be generated.  Often, this spike can momentarily exceed the amperage rating of the USB port.  This can cause a disconnect to occur.

It’s important to understand that not all USB ports are made identical.  In general, the ports on the rear of the computer are part of the computer’s motherboard; these ports are rated as high power ports.  However, USB ports that are not part of the motherboard, and usually located on the front of the computer may not receive the same power rating.  

Often a supply company will provide a computer will a dozen or so USB ports, however, to save money will choose to use what is called a ‘front panel USB header’ which has a small piece of circuitry that acts as a hub.  In this case, the power to the front panel USB is reduced.  Furthermore, it is probable that these ports may not be USB 3 and if used for a high-demand peripheral will cause a disconnects to occur.

USB Hubs

Another strong recommendation is to use a high quality powered USB hub rather than connecting several USB cables directly to a computer.  A powered hub should be used rather than an unpowered hub as the former provides its own direct power source which is usually rated at a higher amperage than the computer’s USB port.  

The interface modules that form the core of my simulation system have one or two powered hubs installed to the module.  The interface cards are then connected by very short USB cables to the hub.  A high quality USB cable (with a NLN) then connects the interface module directly to the computer.

Windows Power Management Settings (PMS)

Not all USB peripherals will be required at all times.  Often a device will not need to communicate with the computer until something is required – such as a change to a radio frequency, an input from the control column or a key press to the MCP or CDU.

LEFT:  Screen grab of Windows 7 PMS (click to enlarge).

Windows has a nasty habit of ‘putting to sleep’ a USB connection that is not being used.  It does this to save power.  It is very imperative that you ensure that all power saving modes are turned off with regard to USB.  

To do this open your control panel and search for device manager.  Scroll down until you find Universal Serial Bus.  Under this tab you will find all the USB ports that you have attached to your computer.  Open each in turn and check the power management settings and ensure they are turned off.

Troubleshooting USB Disconnects

It is paramount to try and discover which peripheral is causing the disconnect.  The easiest way to troubleshoot a disconnect issue is to remove ALL the USB cables from the computer, and then one by one re-connect the cables to the allocated port and test.  Make sure you switch your computer off and on as you add each of the cables in turn.  Hopefully, you will eventually discover which cable/device is causing the issue.  The problem device will ‘ding dong’ if a secure connection is not possible.

If USB disconnects continue, try swapping the cables between different USB ports on the computer.  The disconnect issue maybe caused by the USB port/cable combination you are using.  As mentioned, not all USB ports have the same amount of power/amps available to them. 

Try to place peripherals that require minimal power, such as a mouse or keyboard, on lower-powered USB ports, and place more energy-requiring peripherals on powered hubs; perhaps only a few devices on the one hub.  Doing this will ensure that the hub will always have enough power (amps) to power the devices attached (cancelling out possible spikes as discussed above).  

Final Call

Hopefully, if you apply the above-mentioned suggestions USB disconnects will cease.  However, you will eventually reach the limit of USB capability, and at this point the use of Ethernet should be investigated to augment, or to replace the reliance on USB.

This article is but a primer.  I am not an IT expert and welcome any comments.

Friday
Jan202017

Magnetic Declination and Navigation Database Update

There's little point using real aircraft parts (OEM) when the underlying databases in flight simulator, that provide aeronautical information, are out-of-date.  A commonly encountered problem is: 'Why is the approach course on the simulator different to that published in the approach chart'

If wanting to achieve a high degree of realism when flying flight simulator, then up-to-date aeronautical information is vital. 

Navigraph strives to maintain the accuracy of their charts and database sets by releasing quarterly updates.  However, up-to-date data is pointless if the baseline navigational data in FS9, FSX or P3D is dependent upon outdated datum points, incorrect ILS data and runway identifiers, and various misplaced VORs and NDBs.  

The baseline navigational data that flight simulator uses is based on information that was available in 1988, and matching this dataset with any up-to-date dataset can cause navigational problems.  Furthermore, magnetic declination changes each year and after several years there is a major discrepancy in the accuracy of the data.  This discrepancy reports as incorrect approach course directions.  

File Location and 2017 Datasets

Flight simulator stores the aeronautical information as a. bgl file usually located in the scenery/base/scenery folder in the flight simulator route directory.  The file name is MagDec.bgl.  Replacing this file with an up-to-date MagDec.bgl file is very straightforward.

In January 2013, I wrote a similar article concerning this topic.  To review this article click here.  Since this date, the data has been updated.

Herve Sorrs (o-la-la)

No this is not a French dish served with snails (laughing). 

Herve Sors is well known for his work developing programs and add-ons that enhance the accuracy of the datasets that flight simulator relies upon.  His website is a treasure trove of information that explains the reasons why datasets should be maintained; in addition to being a platform from which to download programs.

Correcting Magnetic Variation

The Magnetic Variation Data (MVD) package provides an updated set of magnetic declination (Magdec) .bgl files as of January 2017.  Replacing the default magdec.bgl file with the one provided in this package will result in a much better fit between displayed headings and current documentation data (runway, ILS and procedure headings).

The MVD package can be downloaded from his website for free (PayPal donation welcome).  

Installation

Installation of the new MAGVAR.BGL files (copied from text file in the MVD).

(i)    Close FS9 or FSX/P3D, since you will not be allowed to replace the file while the simulator is running.
(ii)    Locate the MAGDEC.BGL file which is in the \SCENERY\BASE\SCENERY\ sub folder of your FS9/FSX-P3D install directory.
(iii)    Keep a copy of the old file.  Rename it MAGDEC.BGL.BAK (do not use a bgl extension if the file is kept in the same directory).
(iv)    In the provided package, select the updated file you want to use, either FS9, FSX or P3D.
(v)    Copy the new MAGDEC.BGL file in the \SCENERY\BASE\SCENERY\ sub folder of your FS9/FSX-P3D install directory.

Flight Simulator will rebuild its index at first launch and the new magnetic variations will be applied.

Updating NavAids (FSX and P3D)

To update the various NavAids, Herve has created a program called World Navaids (installer version 8.00).  This program comes with a self-extracting installer that provides an an easy to use interface to select, amongst other things, which NavAids you wish to update or install to which geographic region.  The interface also cross references the data and provides a conflict report if there is a discrepancy between the default and add-on scenery datasets.  Prior to any update occurring, the program will make a back-up of the existing dataset.

Final Call

Herve Sors has taken it upon himself to maintain the accuracy of the flight simulator database and to provide, free of charge, many small programs that enhance out simulation experience.  Thank you Herve for your contribution.  His website is Flight Simulator Aircraft Dynamics and Navdata.

Wednesday
Dec212016

RAAS Professional By FS2Crew - Review

Runway incursions are a leading cause of aviation fatalities and account for approximately $1 billion annually in aircraft damages. To help prevent such losses, close calls and collisions, the industry requested a safety system that would help maintain situational awareness during taxiing and preparing for takeoff and landing. 

Honeywell stepped in to fill the gap by developing an easy-to-install heads-up advisory system with aural alerts (call-outs) to increase flight crew situational awareness during ground and air operations relative to the runway. 

This system was then further improved upon, with the collaboration of Emmirates.

LEFT:  KLAX airport diagram showing the maze that hundreds of aircraft each day must safely navigate.  Given the complexity of many airports, it's amazing there are not more runway incursions (click to enlarge).

I previously used a shareware version of RAAS developed by PlaneMan in South Korea.  This small FS add-on worked well, however, recently it stopped working on my system for an uknown reason.  I wrote a review on FsRAAS in 2011.  Searching for a replacement I came across RAAS Professional developed by FS2 Crew.  

What is RAAS

RAAS is an acronym for Runways Awareness And Advisory System (RAAS).  RAAS was developed by Honeywell Aerospace as a simple to install but effective software addition to the Honeywell Enhanced Ground Proximity Warning System (EGPWS).  Although the base-line RAAS is still in operation, Honeywell has improved the software by integrating additional aural advisory call-outs; in particular, relating to stabilised approaches.  SmartRunway and SmartLanding are the next generation of RAAS.

RAAS Professional replicates the complete aural Honeywell suite (RAAS, SmartRunway and SmartLanding), however, does not simulate the visual advisory displays.

Installation

Installation is via an installer and is straightforward.  The software installs a .ddl file which is loaded automatically when you begin a new simulation flight.  Once installed, a tab (RAAS Professional) will be added to the menu bar in flight simulator (FSX); this is where the user interface is opened to configure the program.  I did not experience any issues installing this program.

RAAS uses Simconnect to connect to flight simulator and does not require the use of FSUPIC.  RAAS will operate on FS9, FSX and P3D simulation platforms.  

Be aware that problems can occur when attempting to connect any add-on software that uses Simconnect (as opposed to FSUPIC).  If a problem occurs, the easiest way to rectify it is to re-install the Simconnect module of flight Simulator.

Initial Configuration (Managing the Runway Database)

The most important task to complete prior to configuring RAAS is to download a small standalone program called MakeRunways.  This software has been developed by Peter Dowson and is available gratis from his website.  The MakeRunways utility should be placed in your main flight simulator folder where the Scenery.cfg file is located.    

When MakeRunways is run it interrogates your scenery folder and generates several database files that include, amongst other things, the runways found in flight simulator.  The generated files are automatically saved to your main flight simulator folder, for programs such as RAAS, to access and read. 

It’s important to remember that whenever you install new scenery you must run the MakeRunways utility to ensure that the database is synchronized and up-to-date otherwise RAAS will not work with the new add-on airport scenery.

Advanced Configuration

RAAS, like its real world counterpart, is highly configurable from the User Interface (UI) accessed from the Add-Ons menu bar in flight simulator.

The following aural call-outs (advisory) are available.

Approaching Runway (On Ground): advisory provides the flight crew with an awareness of when a runway is being approached.
Approaching Runway (In Air): advisory provides the flight crew with an awareness of which runway the aircraft is lined-up with during approach.
On Runway: advisory provides the flight crew with an awareness of which runway the aircraft is lined up with on the ground.
Runway End: advisory is used to improve crew awareness of the runway end during low visibility operations.
Taxiway Take-off: advisory alerts pilots to excessive taxi speeds or an inadvertent takeoff on a taxiway.
Insufficient Runway Length (On Ground): provides the crew of an awareness of which runway the aircraft is lined-up with and if the runway length available is less than the defined minimum takeoff length.
Extended Holding on Runway: alerts the crew of an extended holding period on the runway.
Approaching Short Runway (In Air): offers an advisory of which runway the aircraft is lined-up with and if the runway length available is sufficient as defined in the Runways section.
Taxiway Landing: alerts the crew if they are not lined up with a runway at low altitudes.
Takeoff Flap Monitor: alerts the crew if the aircraft's flaps are not in the defined takeoff range.
Landing Distance Remaining: provides the flight crew with an awareness of the runway length remaining during roll-out.
Distance Remaining (Rejected Takeoff): provides the flight crew with an awareness of the runway length remaining during a rejected takeoff.
Landing Flap Monitor: advisory alerts the crew if the landing flaps are not set.
Excessive Approach Speed: is an alert if the aircraft speed become excessive compared to the final approach speed.
Excessive Approach Angle: is an alert if the aircraft's approach angle becomes too steep.
Altimeter Setting (Above Transition): alerts the crew if the altimeter is not set to standard after climbing above the transition altitude.
Altimeter Setting (Below Transition): provides the flight crew with an awareness of improper corrected altitude setting while below the transition altitude.
Long Landing: alerts the flight crew if the aircraft has not touched down within the pre-defined Touchdown Zone Length.
Caution Enabled: adds the phrase ‘Caution’ to select aural calls.

Any of the aural call-outs can be turned on or off and several parameters are configurable from the UI.  Additionally, specific parameters can be changed depending upon aircraft type or airline policy, such as:

•    Aircraft type.
•    Runway takeoff and landing length, runway length and touchdown zone.
•    Hold times (initial hold time and repeats).
•    Flaps configuration (takeoff, landing, upper and lower altitudes).
•    Approach speeds.
•    Transition altitudes.
•    Extended hold times and frequency of the aural call-out.

If you fly different aircraft, any number of user profiles can be created.  The profiles are associated with the aircraft type selected in flight simulator.

Comparison - RAAS Professional to the  Honeywell System

RAAS Professional by Fs2Crew replicates the real Honeywell system surprisingly well.  The aural call-outs are identical and the female voice sounds very similar to the voice used by Honeywell - which provide either a female or male voice.  If you’re keen to compare RAAS to the Honeywell system I recommend you visit the Honeywell website and watch the three (3) videos at the bottom of the webpage.

LEFT:  RAAS Professional User Interface (UI).  Click to enlarge.

Turning RAAS On and Off (RAAS Master Switch)

RAAS can be turned on and off ‘on the fly’ from the User Interface (UI) or by assigned a hot-key (key event API) in flight simulator.  By default the on/off function has been assigned to the water rudder (R) function (from within the flight simulator control panel).  It is also possible to assign this functionality to a switch/toggle.

Sound Cards and System Test

RAAS has been designed to be used within multiple speaker environments, and changing the speaker preference is made directly in the User Interface (UI).  With a little tinkering you should be able to dedicate the RAAS aural call-outs to a separate speaker while maintaining engine noise and Air Traffic Control to other speakers and a headset.  A master volume control tab enables the sound levels to be adjusted (if the speaker does not have volume control knob).

The UI has a System Test to determine correct configuration and connection (audio test) and an error log.  The error log can be used during troubleshooting (if necessary).  

Voice Sets and Memory Use

Currently RAAS only supports English in a female voice.  I believe that additional foreign language voice sets may be released in due course.

When RAAS is running, there is no discernable effect on the computer or flight simulator.

Support

A detailed and easy to read manual is supplied with the program.  The manual, in addition to providing detailed installation instructions, also has a very good troubleshooting section in the unlikely event that you have problems during the installation process.

RAAS supports a dedicated support forum and the developer replies to questions when asked.  

Program Shortfalls

At the moment it is not possible to install RAAS on a client computer and run the program  across a network.  Although RAAS does not use a lot of computer resources, some users may wish to display the UI (when required) on a client screen in association with the Instructor Station.

Another shortfall is the inconsistent operation of the key event API that enables you to connect a switch/toggle to the on/off function (RAAS Master Switch).  Sometimes it works and at other times it does not work correctly.

Final Call

If you seek realism, RAAS is a worthwhile addition to flight simulator.   When configured to an appropriate aircraft, the aural call-outs are timely and helpful to situational awareness.  Two features I particularly like are the ability of RAAS to remind you to set the appropriate flaps detente prior to takeoff, and the aural call-out that is generated which identifies the runway you are aligned with during final approach.

I must admit there was one occurrence when I was conducting a VOR approach to a parallel runway in limited visibility.  The aural call-out stated I was aligned to runway 24 Left when I was supposed to landing on runway 24 Right!  But isn’t this the reason RAAS was designed – to stop incursions and provide situation awareness to flight crews.

References and Affiliation

This article was written with reference material obtained from Honeywell Aerospace.  

Please note I have no affiliation with FS2Crew.  I have not been provided with ‘free’ software, nor did I receive a discount in return for a favourable review.  The comments and recommendations I have made are my own.  Nore information on RAAS Professional can be obtained directly from the FS2Crew website.

Flight Simulator, in this article, refers to FSX/FS10.  I use the B737 avionics suite developed by ProSim-AR.

BELOW:  Honeywell promotional video (courtesy & with permission Honeywell).

BELOW:  RAAS Professional promotional video (courtesy FS2Crew).

Friday
Nov182016

TaxiSigns HD - Review

A small add-on program which may interest some is TaxiSigns HD.  Essentially this software replaces all the default taxiway signs in flight simulator (FS) with a selection of several higher resolution 3D images with enhanced lighting effects.  For those that spend considerable time taxiing the aircraft this program is sure to please.

LEFT:  Example of the high definition sign showing night lighting which creates a pleasing  illumination in front of sign.  This feature is missing in the default textures (click to enlarge).

Installation and Features

Installation is via a wizard installer which will ask where you wish to install the program and also ask which directory flight simulator is installed. 

Once installed, a sub menu (TaxiSigns HD) will be placed within the flight simulator Add-Ons menu.

TaxiSigns HD works be adding its own scenery area, called TaxiSigns HD layer, to the FS scenery library.  The default textures are not overwritten or deleted and outside of its own scenery area, the program does not modify any flight simulator files.  To uninstall the product, and restore the default signs, use the Windows Control Panel to uninstall the program.  

The program has a user interface screen accessible from the FS Add-Ons menu.  The interface enables the user to easily alter the 3D model, daytime and night textures, and whether the signs illuminate the ground at night.   

One of the main advantages, other than appearance (the signs actually look like signs), is the night lighting effects.  Each sign can be front lit to allow the ground in front of the sign to be illuminated.  

The following outlines the features of the program:

•    3D taxiway signs instead of default rectangles 
•    Crystal clear text and FAA mandated font (high resolution textures) 
•    Choice of several 3D taxiway sign textures and shading effects (day and night) 
•    Illumination of the ground in front of each taxiway sign 
 

Evaluation of TaxiSigns HD

If you spend considerable time taxiing or take photographs and video within flight simulator then this program is well worthwhile. 

LEFT:  The user interface in which various options can be selected.  Note the posts that hold the sign (click to enlarge).

The textures are very sharp and the signs are much easier to read than the default textures.  They are also much more attractive to look at in comparison to the default signage.

A problem observed in flight simulator (FSX) is the slight blurring of the signs as the aircraft taxis past the sign.  The replacement textures remain sharp and do not blur as do the default signs.  Furthermore, I could not discern any appreciable drop in frame rates.

Compatibility an Support

TaxiSigns HD is fully compatible with both DirectX 9 and DirectX 10 modes of FSX, and also with FS9 and Prepar3D (versions 1.0-2.2).  

A succinct manual is provided with the program and although the program is very simplistic, a support forum is available.

The program can be downloaded from the developers website and tested for a period of 10 minutes.

TaxiSigns HD

Note I do not have any affiliation with the software developer.