New Interface Modules

My friend and I have not been sitting idle.  Part of the upgrade to the simulator has been additional interface modules.

In early 2014, an Interface Master Module (IMM) was constructed to trial the modular concept.  This module housed most of the interface cards and relays that, at the time, were used in the simulator.  This trail was successful.  The single trial IMM has now been discarded and has been replaced with the:

Information concerning each of these modules, including an introduction to the modular concept, can be found in a new section named Interface Modules.  Interface Modules can be assessed from the main menu tabs located at the top of each website page (the brown banner).

It has taken considerable time to design and construct, and then interface these modules to the simulator.  To some, the process may appear complex and convoluted.  However, in the long term the idea is sound and a centralized area offers considerable advantages.

I hope you enjoy reading about the new modular systems.

Throttle Quadrant Rebuild - Evolution Has Led to Major Alterations

oem 737-500 thrust levers

Two major changes to the simulator have occurred.  The first concerns the throttle quadrant and the second is the replacement of the trial Interface Master Module with a more permanent modular solution.  The changes will be documented in the near future after final testing is complete.

The throttle quadrant has been completely rebuilt from the ground up.  Although the outside may appear identical to the earlier quadrant, the rebuild has replaced nearly everything inside the quadrant and the end product is far more reliable than its predecessor.

The throttle unit, in its previous revision, worked well, but there were several matters which needed attention.  The automation and functionality was adequate, but could be improved upon.  There were also 'niggling' issues with how the clutch assembly operated - it was somewhat loose which caused several flow-on problems.

Initially, some minor improvements were to be made; however, one thing lead to another and as 'fate would have it' the throttle unit has been rebuilt from the bottom up.

Improvements

The improvements have primarily been to the automation, the autothrottle and the speedbrake system.  However, during the rebuild other functionality have been improved: the synchronised tracking movement of the thrust levers is now more consistent and reliable, and an updated system to operate the parking brake has also been devised.  This system replicates the system used in the real aircraft in which the toe brakes must be depressed before the parking lever can set or disengaged.

Furthermore, the potentiometers controlling the movement of the flaps and thrust levers have been replaced with string potentiometers which increases the throw of the potentiometer and improves accuracy.  The calibration of the flaps and speedbrake is now done within the system, removing the need for 'tricky' calibration in FSUIPC. 

In the previous throttle version there was an issue with the speedbrake not reliably engaging on landing.  This in part was caused by a motor that was not powerful enough to push the lever to the UP position with consistent reliability.  This motor has been replaced with a motor more suitable to the power requirement needed.  The speedbrake is mechanical, mimics the real counterpart in functionality, nd does not require software to operate.

This throttle conversion has maintained the advanced servo card and motor that was used to control the movement of the stab trim tabs (trim indicators); however, the motor that provides the power to rotate the trim wheels has been replaced with a more reliable motor with greater power and torque.  The replacement motor, in conjunction with three speed controller interface cards, have enabled the trim wheels to be rotated at four independent speeds.  This replicates the four speeds that the wheels rotate in the real 737 -800 aircraft.

Finally, the automotive fan-belt system/clutch system which was a chapter from the 'Dark Ages' has been replaced with two mechanical clutch assemblies that has been professionally designed to operate within the throttle unit - this will completely remove any of the 'niggles' with the previous clutch assembly becoming loose and the fan belt slipping.  Each thrust lever has a dedicated poly-clutch and separate high powered motor. 

A brief list of improvements and changes is listed below:

  • Next Generation skirt replaced with more accurate skirt (prototype);

  • Reproduction TO/GA buttons replaced with OEM square TO/GA buttons;

  • Fan belt driven clutch system replaced with slipper clutch system;

  • motors replaced that control lever movement and trim wheels;

  • 95% of wiring re-done to incorporate new interface modules;

  • Replacement interface alert system;

  • Flap potentiometers replaced by string potentiometers;

  • Speedbrake potentiometer replaced by linear potentiometer;

  • Thrust levers potentiometers replaced by dual string potentiometers;

  • Internal mechanism altered to stop noise of chain hitting throttle frame;

  • Thrust lever tracking movement accuracy improved;

  • Thrust reversers now have proportional thrust for each lever 1 and 2; and

  • The parking brake mechanism replaced with a more accurate system that reflects that used in the real aircraft

The conversion of the throttle quadrant has been a learning process, and the changes that have been done improve the unit's functionality and longevity - not too mention accuracy, far beyond what it was previously.

Dedicated Interface Modules

The throttle previously interfaced with the Interface Master Module (IMM).  The IMM was developed as a trial module to evaluate the modular concept.

The throttle quadrant will now directly interface with two dedicated modules called the Throttle Interface Module (TIM) and Throttle Communication Module (TCM).  Both of these modules contain only the interface cards, relays and other components required to operate the throttle and automation.  Additionally, the system incorporates a revised Interface Alert System which evolved from the original concept used in the IMM.

To read more concerning the various interface modules, a new website section has been produced named Interface Modules.  This section is found in the main menu tabs at the top of each page.

Flight Testing (March 2015)

The throttle and replacement interface modules are currently being evaluated and minor issues rectified.

Once testing is complete, the alterations undertaken during the rebuild process will be documented in separate posts and, to facilitate ease of searching, links will be added to the flight controls/throttle quadrant section.

It should be noted that the work done to rebuild the throttle was done with the help a friend, who has a through knowledge of electronics and robotics.

Autobrake System - Review and Procedures

air berlin 737-700 -  autobrake set, flaps 30, spoilers deployed, reverse thrust engaged (Marcela, GFDL 1.2 www.gnu.org/licenses/old-licenses/fdl-1.2.html, via Wikimedia Commons)

The autobrake, the components which are located on center panel of the Main Instrument Panel (MIP), is designed as a deceleration aid to slow an aircraft on landing.  The system uses pressure, generated from the hydraulic system B, to provide deceleration for pre-selected deceleration rates and for rejected takeoff (RTO). An earlier post discussed Rejected Takeoff procedures.  This article will discuss the autobrake system.

General

The autobrake selector knob (rotary switch) has four settings: RTO (rejected takeoff), 1, 2, 3 and MAX (maximum).  Settings 1, 2 and 3 and RTO can be armed by turning the selector; but, MAX can only be set by simultaneously pulling the selector knob outwards and turning to the right; this is a safety feature to eliminate the chance that the selector is set to MAX accidentally.  

When the selector knob is turned, the system will do an automatic self-test.  If the test is not successful and a problem is encountered, the auto brake disarm light will illuminate amber.

The autobrake can be disengaged by turning it to OFF, by activating the toe brakes, or by advancing the throttles; which deactivation method used depends upon the circumstances and pilot discretion.  Furthermore, the deceleration level can be changed prior to, or after touchdown by moving the autobrake selector knob to any setting other than OFF.  During the landing, the pressure applied to the brakes will alter depending upon other controls employed to assist in deceleration, such as thrust reversers and spoilers.

The numerals 1, 2, 3 and MAX provide an indication to the severity of braking that will be applied when the aircraft lands (assuming the autobrake is set).

In general, setting 1 and 2 are the norm with 3 being used for wet runways or very short runways.  MAX is very rarely used and when activated the braking potential is similar to that of a rejected take off; passenger comfort is jeopardized and it is common for passenger items sitting on the cabin floor to move forward during a MAX braking operation.  If a runway is very long and environmental conditions good, then a pilot may decide to not use autobrakes favouring manual braking.

Often, but not always, the airline will have a policy to what level of braking can or cannot be used; this is to either minimize aircraft wear and tear and/or to facilitate passenger comfort. 

The pressure in PSI applied to the autobrake and the applicable deceleration is as follows:

  • Autobrake setting 1 - 1250 PSI equates to 4 ft per second squared.

  • Autobrake setting 2 - 1500 PSI equates to 5 ft per second squared.

  • Autobrake setting 3 - 2000 PSI equates to 7.2 ft per second squared.

  • Autobrake setting MAX and RTO - 3000 PSI equates to 14 ft per second (above 80 knots) and 12 ft per second squared (below 80 knots).

Conditions

To autobrake will engage upon landing, when the following conditions are met:

  • The appropriate setting on the auto brake selector knob (1, 2, 3 or MAX) is set;

  • The throttle thrust levers are in the idle position immediately prior to touchdown; and,  

  • The main wheels spin-up.

If the autobrake has not been selected before landing, it can still be engaged after touchdown, providing the aircraft has not decelerated below 60 knots. Setting the autobrake usually forms part of the approach cehcklist.

To disengage the autobrake system, any one of the following conditions must be met:

  1. The autobrake selector knob is turned to OFF (autobrake disarm annunciator will not illuminate);

  2. The speed brake lever is moved to the down detent position;

  3. The thrust levers are advanced from idle to forward thrust (except during the first 3 seconds of landing); or,

  4. Either pilot applies manual braking.

The last three points (2, 3 and 4) will cause the autobrake disarm annunciator to illuminate for 2 seconds before extinguishing.

Important Facet

It is important to grasp that the 737 NG does not use the maximum braking power for a particular setting (maximum pressure), but rather the maximum programmed deceleration rate (predetermined deceleration rate).  Maximum pressure can only be achieved by fully depressing the brake pedals or during an RTO operation.  Therefore, each setting (other than full manual braking and RTO) will produce a predetermined deceleration rate, independent of aircraft weight, runway length, type, slope and environmental conditions.

Autobrake Disarm Annunciator

The autobrake disarm annunciator is coloured amber and illuminates momentarily when the following conditions are met:

  • Self-test when RTO is selected on the ground;

  • A malfunction of the system (annunciator remains illuminated - takeoff prohibited);

  • Disarming the system by manual braking;

  • Disarming the system by moving the speed brake lever from the UP position to the DOWN detente position; and,

  • If a landing is made with the selector knob set to RTO (not cycled through off after takeoff).  (If this occurs, the autobrakes are not armed and will not engage.  The autobrake annunciator remains illuminated amber).

The annunciator will extinguish in the following conditions:

  • Autobrake logic is satisfied and autobrakes are in armed mode; and,

  • Thrust levers are advanced after the aircraft has landed, or during an RTO operation.  (There is a 3 second delay before the annunciator extinguishes after the aircraft has landed).

Preferences for Use of Autobrakes and Anti-skid

When conditions are less than ideal (shorter and wet runways, crosswinds), many flight crews prefer to use the autobrake rather than use manual braking, and devote their attention to the use of rudder for directional control.   As one B737 pilot stated - ‘The machine does the braking and I maintain directional control’.

Anti-skid automatically activates during all autobraking operations and is designed to give maximum efficiency to the brakes, preventing brakes from stopping the rotation of the wheel, thereby ensuring maximum braking efficiency.  Anti-skid operates in a similar fashion to the braking on a modern automobile.

Anti-skid is not simulated in FSX/FS10 or in ProSim737 (at the time of writing).

To read about converting an OEM Autobrake.

Rejected Takeoff (RTO) - Review and Procedures

The Rejected Takeoff is part of the Auto Brake Selector Panel located on the Main Instrument Panel (MIP).  RTO can be selected by turning the selector knob to the left from OFF by one click. The knob is from a classic 737-500 knob

A takeoff may be rejected for a variety of reasons, including engine failure, activation of the takeoff warning horn, ATC direction, blown tyres, or system warnings.  For whatever reason, Boeing estimates that 1 takeoff in every 2000 will be rejected (Boeing Corporation).

This is an OEM (Original Equipment Manufacture) autobrake assembly that has been converted for use in the simulator.  Note that the selector knob is not NG compliant but is from a 500 series airframe.  In time this knob will be replaced.  (click image to enlarge)

Performed incorrectly, an RTO can be a dangerous procedure; therefore, protocols have been are established that need to be followed.  

This is the first of two consecutive posts that will discuss components of the autobrake system.  In this post RTO procedures will be explained.  In the second post the auto brake will be examined.

Rejected Takeoff (RTO)

The Auto Brake and Rejected Takeoff (RTO) are part of Auto Brake System, the components which are located on center panel of the Main Instrument Panel (MIP).  An RTO is when the pilot in command makes the decision to reject the takeoff of the aircraft.  

The Boeing Flight Crew Training Manual (FCTM) states:

  • A flight crew should be able to accelerate the aircraft, have an engine failure, abort the takeoff, and stop the aircraft on the remaining runway'; or,

  • 'accelerate the aircraft, have an engine failure, and be able to continue the takeoff utilizing one engine’.  

Two important variables of pre-flight planning need to be established for an RTO to be executed safely - V speeds and runway length.

V Speeds and Runway Length

There are three V speeds that are critical to a safe takeoff and climb out: V1, Vr and V2.  

V1 is the speed used to make the decision to ‘abort or fly’.  Vr is the rotation speed, or the speed used to begin the rotation of the aircraft by smoothly pitching the aircraft to takeoff attitude.  V2 is the speed used for the initial climb-out, and is commonly called the takeoff safety speed.  The takeoff safety speed ensures a safe envelope for single engine operations.

It stands to reason, that the runway must be long enough to cater towards the V speeds calculated from the weight of the aircraft and outside temperature.

Rejected Takeoff - Conditions and Procedure

In general, the protocol used to execute an RTO, is to:

  • Abort the takeoff for ‘cautions’ below 80 knots; and,

  • Between 80 knots and V1 speed, abort only for ‘bells’ (fire warning) and flight control problems.

If a problem occurs below V1 speed, the aircraft should be able to be stopped before reaching the end of the runway.  After exceeding V1 speed, the aircraft cannot be safely stopped and the only option is to takeoff, and after reaching a safe minimum altitude and speed, troubleshoot the problem.

Before takeoff, a flight crew will position the auto brake selector knob to RTO.  This action will trigger the illumination of the auto brake disarm annunciator, which will illuminate amber for 2 seconds; this is a self-test to indicate that the system is working.  After 2 seconds the annunciator will extinguish.

To arm the RTO prior to takeoff, the following conditions must be met:

  • The auto brake and anti-skid systems must be operational;

  • The aircraft must be on the ground;

  • The auto brake selector must be set to RTO;

  • The forward thrust levers must be in the idle position; and

  • The wheel speed must be less than 60 knots.

Once armed, the RTO system only becomes operative after the aircraft reaches 80 knots ground speed (some manuals state 90 knots).  If an ‘abort’ is indicated below 80 knots, the aircraft will need to be stopped using manual braking power.  

The auto brake will remain in the armed mode if the RTO abort was executed prior to 80 knots (the auto brake disarm annunciator does not illuminate).

To engage the RTO the following conditions must be met:

  • The auto brake must be set to RTO;

  • The thrust levers must be retarded to idle position;

  • The aircraft must have reached 80 knots; and,

  • The autothrottle must be disconnected.

When an RTO is executed and the auto brake system engages, the system will apply 3000 PSI to the brakes to enable the aircraft to stop.  Additionally, if the aircraft has reached a wheel speed in excess of 60 knots, and one or two of the reverse thrust levers are engaged, the spoiler panels will extend automatically to the UP position (deploy), and the speed brake lever on the throttle quadrant will move to the UP position.

The auto brake will disengage, if during the RTO either pilot:

  • Activates the toe brakes;

  • Turns the selector knob of the auto brake from RTO to off.   

If the reversers have been engaged and the speed brake lever is in the UP position, then the lever will abruptly move to the DOWN detente position.  When this occurs, the speed brake annunciator will illuminate amber for 2 seconds before extinguishing.  Braking will then need to be accomplished manually.

RTO Procedure

  1. Pilot flying calls ‘STOP’, ‘ABANDON’ or ‘ABORT’

  2. Pilot flying closes thrust levers and disengages autothrottle.

  3. Pilot flying verifies automatic RTO braking is occurring, or initiates manual braking if deceleration is not great enough, or autobrake disarm light is illuminated.

  4. Pilot flying raises speedbrake lever.

  5. Pilot flying applies maximum reverse thrust or thrust consistent with runway and environmental conditions.

  6. Once stopped, pilot flying engages parking brake and completes RTO checklist.

Important Point:

  • Point 4 is important as although the spoilers deploy automatically when the reverse thrust is engaged, the speedbrake lever must be extended manually by the pilot flying (prior to application of reverse thrust).  This is to minimise any delay in spoiler extension, as extension is necessary for efficient wheel braking.

What Circumstances Trigger An RTO

Prior to 80 knots, the takeoff should be rejected for any of the following:

  • Activation of the master caution system;

  • Unusual noise and vibration;

  • Slow acceleration;

  • Takeoff configuration warning;

  • Tyre failure;

  • Fire warning;

  • Engine failure;

  • Bird strikes;

  • Windshear warning;

  • Window failure; and/or,

  • If the aircraft is unsafe or unable to fly.

After 80 knots and prior to V1, the takeoff should be rejected for any of the following:

  • Fire warning;

  • Engine failure;

  • Windshear warning; and/or,

  • If the aircraft is unsafe or unable to fly.

After V1 has been reached, takeoff is mandatory.

Important Points:

Important points to remember when performing a Rejected Takeoff are:

  1. Engage the RTO selector knob before takeoff;

  2. Retard throttles to idle;

  3. Disengage the autothrottle (A/T);

  4. Engage one or both reverse thrust levers;

  5. Monitor RTO system performance, being prepared to apply manual braking if the auto brake disarm light annunciates;

  6. Manually raise speed brake lever if not already in the UP position BEFORE engaging reverse thrust; and,

  7. Remember that RTO functionality engages only after the aircraft has reached 80 knots ground speed, and remains armed if the RTO has been executed below 80 knots.

Procedural Variations

A successful RTO is dependent upon the pilot flying making timely decisions and using proper procedures.  Whether an RTO is executed fully or partly is at the discretion of the pilot flying (reverse thrust engaged to deploy spoilers).

It should be noted that If the takeoff is rejected before the THR HLD annunciation, the autothrottles should be disengaged as the thrust levers are moved to idle. If the autothrottle is not disengaged, the thrust levers will advance to the selected takeoff thrust position when released. After THR HLD is annunciated, the thrust levers, when retarded, remain in idle.

For procedural consistency, disengage the autothrottles for all rejected takeoffs.

Figure 1 provides a visual reference indicating the distance taken for an aircraft to stop after various variations of the Rejected Takeoff are executed (copyright, Boeing Flight Crew Training Manual FCTM).

figure 1: distance taken for an aircraft to stop after various variations of the Rejected Takeoff are executed (copyright, Boeing Flight Crew Training Manual FCTM)

This post has explained the basics of a Rejected Takeoff.  Further information can be found in the Flight Crew Training Manual (FCTM) or Quick Reference Handbook (QRH).

In the next post the autobrake system will be discussed.

Direct-To-Routing, ABEAM PTS and INTC CRS - Review and Procedures

In an earlier post, a number of methods were discussed in which to create waypoints ‘on the fly’ using the Control Display Unit (CDU).  Following on a similar theme, this post will demonstrate use of the Direct-To Routing, ABEAM PTS and Course Intercept (INTC CRS) functionality.

CDU use an appear very convoluted to new users, and by far the easiest way to understand the various functionalities is by ‘trial and error and experimentation’. 

The software (Sim Avionics and ProSim737) that generates the math and formulas behind the CDU is very robust and entering incorrect data will not damage the CDU hardware or corrupt the software.  The worst that can happen is having to restart the CDU software. 

Line Style and Colour

The style and colour of the line displayed on the Navigation Display (ND) is important as it provides a visual reference to the status of a route or alteration of a route.

Dashed white-coloured lines are projected courses whilst solid magenta-coloured lines are saved and executed routes.  Similar colour schemes apply to the waypoints in the LEGS page.  A magenta-coloured identifier indicates that this is the next waypoint that the aircraft will be flying to (it is the active waypoint).

Direct-To Routing

A Direct-To Routing is easily accomplished, by selection of a waypoint from the route in the LEGS page, or by typing into the scratchpad (SP) a NAVAID identifier and up-selecting this to LSK 1L.  Once up-selected, the Direct-To route will be represented on the Navigation Display (ND) by a dashed white-coloured line.  Pressing the EXEC button on the CDU will accept the route modification and precipitate several changes:

  • The route line displayed on the ND, previously a white-coloured dashed line will become solid magenta in colour;

  • The previous displayed route will disappear from the ND;

  • All waypoints on the LEGS page between the aircraft's current position and the Direct-To waypoint in LSK 1L will be deleted; and,

  • The Direct-To waypoint in LSK 1L will alter from white to magenta.

Once executed the FMS will direct the aircraft to fly directly towards the Direct-To waypoint.

ABEAM PTS

Following on from the Direct-To function is the ABEAM PTS function located at LSK 5R. 

ABEAM points (ABEAM PTS) are one or more fixes that are generated between two waypoints from within a programmed route.  The ABEAM PTS functionality is found in the LEGS page of the CDU at LSL 5R and is only visible when a Direct-To Routing is being modified, within a programmed route (the LEGS page defaults to MOD RTE LEGS).  Furthermore, the ABEAM PTS dialogue will only be displayed if the the up-selected fix/waypoint is forward of the aircraft's position; it will not be displayed if the points are located behind the the aircraft.

If the ABEAM PTS key is depressed, a number of additional in-between fixes will be automatically generated by the Flight Management System (FMS), and strategically positioned between the aircraft’s current position and the waypoint up-selected to LSK 1L.  The generated fixes and a white-coloured dashed line showing the modified course will be displayed on the Navigation Display (ND).  

To execute the route modification, the illuminated EXEC button is pressed.  Following execution, the white-coloured line on the ND will change to a solid magenta-coloured line, and the original displayed route will be deleted.  Furthermore, the LEGS page will be updated to reflect the new route.

Nomenclature of Generated Fixes

The naming sequence for the generated fixes is the first three letters of the original waypoint name followed by two numbers (for example, TTR will become TTR 01 and CLARK will become CLA01).  If the fixes are regenerated, for instance if a mistake was made, the sequence number will change indicating the next number (for example, TTR01, TTR02, etc).  

Technique

  1. Up-select a waypoint from the route in the LEGS page to LSK 1L, or type into the scratchpad a NAVAID identifier.  This is a Direct-To Routing; when executed the waypoints between the up-selected waypoint and LSL 1L are deleted.

  2. Press ABEAM PTS in LSK 5R to generate a series of fixes along a defined course from the aircraft’s current location to the up-selected waypoint.  The fixes can be seen on the ND.

  3. Pressing the EXEC button will accept and execute the ABEAM PTS route.

Example and Figures

The below figures are screen captures using ProSim737 avionics suite.  The programming of the CDU has been done with the aircraft on the ground.  Click any image to enlarge.

FIGURE 1:  The LEGS page shows a route HB-TTR-CLARK-BABEL-DPO-WON.  The route is defined by a solid magenta-coloured line

FIGURE 2:  The Route is altered to fly from HB to BABEL.  Note that in the LEGS page, the title has changed from ACT to MOD RTE 1 LEGS.  The ND displays the generated ABEAM PTS and projected course (white-coloured dashed line), beginning from the aircraft’s current position and traveling through HB01, TTR01, CLA01 to BABEL.   The EXEC light is also illuminated

FIGURE 3:  When the EXEC light is pressed, the ABEAM PTS and altered route (Figure 2) will be accepted.  The former route will be deleted and the white-coloured dashed line will be replaced by a solid magenta-coloured line.  The magenta colour indicates that the route has been executed.  The LEGS page will also be updated and display the new route, with the waypoint HB01 highlighted in magenta

The Intercept Course (INTC CRS)

To understand the INTC CRS, it is important to have a grasp to what a radial and bearing is and how they differ from each other.  For all practical purposes, all you need to know is that a bearing is TO and a radial is FROM.  For example, if the bearing TO the beacon is 090, you are on the 270 radial FROM it. 

The Intercept Course (INTC CRS) function is located beneath the ABEAM PTS option in the LEGS page of the CDU at LSK 6R.  Like the ABEAM PTS function, the INTC CRS function is only visible when a when a Direct-To Routing, is being modified within a programmed route (the LEGS page defaults to MOD RTE LEGS).

The function is used when there is a requirement to fly a specific course (radial) to the fix/waypoint.  By default, the INTC CRC displays the current course to the fix/waypoint.  Altering this figure, will instruct the FMS to calculate a new course, to intercept the desired radial towards the fix/waypoint (1)  The radial will be displayed on the ND as a white-coloured dashed line, while the course to intercept the radial (from the aircraft’s current position) will be displayed as a magenta-coloured dashed line.

Visual Cues

An important point to note is that,  if the course (CRS) is altered, is that the displayed (ND) white-coloured line will pass directly through the fix/waypoint, but the line-style will be displayed differently dependent upon what side of the fix/waypoint the radial is, in relation to the position of the aircraft.  The line depicted by sequential long and short dashes (dash-dot-dash) shows the radial TOWARDS the fix/waypoint while the line showing dots, displays the radial AWAY from the fix/waypoint. 

It is important to understand, that for the purposes of the FMS, it will always intercept a course TO a fix/waypoint; therefore, the disparity in how the line-style is represented provides a visual cue to ensure a flight crew does not enter an incorrect CRS direction.

Intercept Heading

However, the flight crew may wish not fly directly to the fix/waypoint, but fly a heading to intercept the radial.  In this case, the flight crew should select the particular heading they wish to fly in the MCP heading selector window, and providing LNAV is armed, the aircraft will fly this heading until reaching the intercept course (radial), at which time the LNAV will engage and the FMS will direct the aircraft to track the inbound intercept course (radial) to the desired fix/waypoint.

Technique

  1. Up-select a waypoint from the route in the LEGS page to LSK 1L, or type into the scratchpad a NAVAID identifier and up-select.  This is a Direct-To Routing and will delete all waypoints that the aircraft would have flown to prior to the up-selected identifier.

  2. Type the course required into INTC CRS at LSK 6R.

  3. This will display on the ND a white-coloured long dashed line (course/radial).  Check the line-style and ensure that the course is TOWARDS the waypoint.  The line, closest to the aircraft should display sequential long and short dashes.

  4. Prior to pressing the EXEC button to confirm the route change, check that the intended course line crosses the current course line of the active route (solid magenta-coloured line).

  5. If wishing to fly a heading to intercept the radial, use the MCP heading window.  If LNAV is armed the FMS will direct the aircraft onto the radial.

Example and Figures

The below figures are screen captures using ProSim737 avionics suite.  The programming of the CDU has been done with the aircraft on the ground.  Click any image to enlarge.

FIGURE 1:  The LEGS page shows a route HB-TTR-CLARK-BABEL-DPO-WYY-WON.  The route is defined by a solid magenta-coloured line.   ATC request ‘QANTAS 29 fly 300 degrees until intercepting the 345 degree radial of BABEL; fly that radial to BABEL then remainder of route as filed

FIGURE 2:  From the LEGS page, locate in the route the waypoint BABEL (LSK 4L).  Recall that the INTC CRS will only function in Direct-To Routing mode. Up-select BABEL to LSK 1L.  Note that a dashed white-coloured line is displayed on the ND showing the new course from HB to BABEL.  The original course is still coloured magenta and the EXEC light is illuminated

FIGURE 3:  Type the radial required (345) into INTC CRS at LSK 6R.  This action will generate (fire across the page) a white-coloured dashed line displaying the 345 course to BABEL (the 165 radial).  Check the line-style and ensure the radial crosses the aircraft’ current course which is 300.  Recall that this line style indicates that the radial to TO BABEL

FIGURE 4:   Press EXEC to save and execute the new route.  The dashed line alters to a solid magenta-coloured line and joins with the remainder of the route at BABEL.  The magenta colour indicates this is now the assigned route.  Note that the magenta line continues across the ND away from the aircraft and BABEL.  This is another visual cue that the radial is traveling TO BABEL

If the aircraft continues to fly on a course of 300 Degrees, and LNAV is armed, the FMS will alter course at the intersection and track the 345 course to BABEL (165 radial).  The LEGS page is also updated to reflect that BABEL is the next waypoint to be flown to (BABEL is coloured magenta

Final Call

Direct-To Routings and ABEAM Points are usually used when a flight crew is required to deviate, modify or shorten a route.  Although the use of ABEAM PTS can be debated for short distances, the technology shines when longer routes are selected and several fixes are generated. The Intercept Course function, on the other hand, is used whenever published route procedures (STAR and SID transitions), or ATC require a specific course (radial) or heading to be followed to or from a navigation fix.

Caveat

The content of this post has been checked to ensure accuracy; however, as with anything that is convoluted minor mistakes can creep in (Murphy, aka Murphy's Law, reads this website).  If you note a mistake, please contact me so it can be rectified.

Acronyms and Glossary

  • ATC – Air Traffic Control

  • CDU – Control Display Unit

  • Direct-To Routing – Flying directly to a fix/waypoint that is up-selected to LSK 1L in the CDU.  All waypoints prior to the u-selected waypoint will be deleted

  • DISCO – refers to a discontinuity between two waypoints loaded in a route within the LEGS page of the CDU.  The DISCO needs to be closed before the route can be executed

  • DOWN-SELECT - Means to download from the CDU LEGS page to the scratchpad of the CDU)

  • FIX – A geographical position determined by visual reference to the surface, by reference to one or more NAVAIDs

  • FMC – Flight Management Computer

  • FMS – Flight Management System

  • Identifiers – Identifiers are in the navigation database and are VORs, NDB,s and published waypoints and fixes

  • LSK 5L – Line Select: LSK refers to line select.  The number 5 refers to the sequence number between 1 and 6.  L is left and R is right (as you look down on the CDU in plan view)

  • MCP – Mode Control Panel

  • NAVAIDS – Any marker that aids in navigation (VOR, NDB, Waypoint, Fix, etc.).  A NAVAID database consists of identifiers which refer to points published on routes, etc

  • ND – Navigation Display

  • RADIALS – A line that transects through a NAVAID representing the points of a compass.  For example, the 045 radial is always to the right of your location in a north easterly direction (Bearings and Radials Paper)

  • ROUTE – A route comprising a number of navigation identifiers (fixes/waypoints) that has been entered into the CDU and can be viewed in the LEGS page

  • SP - Scratchpad

  • UP-SELECT – Means to upload from the scratchpad of the CDU to the appropriate Line Select (LSK)

  • WAYPOINT – A predetermined geographical position used for route/instrument approach definition, progress reports, published routes, etc.  The position is defined relative to a station or in terms of latitude and longitude coordinates.

1:  The FMS will calculate the new course based on great circle course between the aircraft’s current location and the closest point of intercept to the desired course.  This course is displayed on the ND as a white dashed line.

Integrated Approach Navigation (IAN) - Review and Procedures

Japanese airlines nearly always gravitate to new technology.  ANA landing RJAA (Narita, Japan). Maarten Visser from Capelle aan den IJssel, Nederland, JA02AN B737 ANA gold cs landing (7211516992), CC BY-SA 2.0

Increased navigational accuracy obtained from software and hardware improvements have led to several enhanced approach types being developed for the Boeing 737.  These augmented approach types provide a constant rate of descent, follow an approximate 3 degree glide path, and eliminate the traditional step-down style of approach.   

This improves landing capability in adverse weather conditions, in areas of difficult terrain, and on existing difficult to fly approach paths.  Not to mention, the benefits that a stabilized and safer approach bring: greater passenger comfort, less engine wear and tear, and lower fuel usage while bringing less workload for the flight crew. 

In this article, I will discuss the concept of Integrated Approach Navigation (IAN) and explain the procedures recommended by Boeing to successfully implement IAN. 

The Boeing Flight Crew Training Manual (FCTM) has an excellent section addressing IAN, and I recommend you read it to gain a greater understanding of how the IAN system functions.

The Navigation Performance Scales (NPS), which augment IAN, will not be discussed.  NPS will form part of a future article.  Information in this article relates to FMC software U10.8A.

Overview

Integrated Approach Navigation (IAN) derives information from an approach type selected from the Flight Management Computer (FMC) database to generate a 3 degree glide path from the Final Approach Fix to the threshold of the runway.  In so doing, it displays visual cues similar to the Instrument Landing System (ILS).  Flight path guidance is derived from the FMC, navigational radios, or combination of both. 

To use IAN, an approach with a glide path must be selected from the FMC database.  The approach must include a series of waypoints that depict a vertical profile that includes a glide path.  

An IAN approach may be flown with a single autopilot, raw data, or by following the visual cues displayed on the Flight Director (FD).

IAN is an airline option, and although not every airline carrier will have IAN as part of their avionics suite, the technology is becoming more popular as the safety and economic benefits of IAN are understood by airline carriers.

Geometric Path (Glide Path)

An IAN Approach approximates a 3 degree glide path (descent profile) from the Final Approach Fix (FAF) to approximately 50 feet above the runway threshold.  Although, the glide path may not comply with altitude constraints in the FMC prior to the FAF, the generated glide path will always be at or above the altitude constraints between the FAF and the Missed Approach Point (MAP) displayed in the FMC.

Critically, an IAN approach is a Category I Non Precision Approach (NPA) and is not to be confused with an ILS Precision Approach.  Therefore, NPA procedures must be adhered to when initiating an approach using IAN.  

Although the automation provided by IAN will guide an aircraft (in most cases) to the threshold of the runway, IAN has not been designed to do this.  Rather, IAN has been designed to guide the aircraft to the MAP published on the approach chart.  The flight crew will then disengage IAN by disengaging the autopilot and autothrottle and fly the remainder of the approach manually as per NPA protocols.

In some instances, the final approach course (FAC) is offset from the runway center line and manoeuvring the aircraft for direct alignment will be necessary, whilst following the glide path angle.

Although the final approach is very similar to an ILS approach, IAN does not support autoland; if the aircraft is not in a stable configuration and you are not visual with the runway at or beyond the MDA, a missed approach procedure (Go-Around) should be executed.

Consistency in Procedures (eighteen approach types to one)

The introduction of IAN has condensed the number of approach types (and differing procedures) to one consistent procedure; minimising the amount of time an airline needs to train pilots in numerous approach types.  Time is money and utilising advanced technology such as IAN can increase airline productivity and safety.

Approach Types

IAN can be used for the following approach types:

  • RNAV

  • RNAV (RNP) – (provided there are no radius to fix legs)

  • NDB and VOR

  • GPS & GNSS

  • LOC, LOC-BC, TACAN, LDA SDF (or similar style approaches)

Note that if using IAN to execute a Back Course Localiser approach (B/C LOC), the inbound front course must be set in the MCP course window.

During the approach you must monitor raw data and cross check against other navigational cues.  Furthermore, although the use of IAN is recommended only for straight-in approaches, line use suggests that flight crews routinely engage IAN up to, but not exceeding 45 degrees from the runway approach course.

IAN is compatible with several approach types, however, being compatible does not necessarily mean that every approach type in the FMC is suitable. 

Since IAN was introduced, additional approaches have been developed and added to the RNAV family; in particular, RNAV (RNP) approaches, that use ‘radius to fix’ (RF) to generate a curved path that terminates at a location where an approach procedure begins.   These approaches have been designed to optimise airspace and usually have tight separation requirements; to fly these approaches an aircraft is required to have additional on-board navigation performance monitoring and alerting equipment. 

These approach charts are identified by the title RNAV (RNP) RWY XX and the letters AR (Authorisation Required) in the description of the chart. 

These approaches and are not suitable to use with IAN; they should be flown with LNAV/VNAV.

Recommended Approach Types

The best approach to use with IAN are straight-in or near straight-in approaches.  VOR, LOC, NDB, RNAV and RNAV (GNSS) approaches work especially well as these approaches usually provide relatively long straight-in legs. 

IAN can be used on an RNP (AR) approaches as long as there are no RF turns involved (straight-in approach only).  If flying such an approach you should be aware that the legs can be quite short and IAN may arm and engage quite late in the approach profile.

Important Point:

  •    The use of IAN is not authorised for a RNAV (RNP-AR) approach.

Using IAN – General

IAN does not need to be specifically ‘turned on’ for it to function; the functionality, if installed in the aircraft, is always operational.  When the aircraft is within range of the designated approach, the runway data and/or Deviation Pointers will annunciate and be displayed on the PFD.  At any time after this point has been reached, IAN can be armed and or engaged by pressing the APP button on the MCP.

Navigation Radios and Radio Frequencies

For an IAN approach to function, an approach procedure with a glide path must be selected from the FMC database.  Although selection of navigation radios is not mandatory, selection is recommended, as correct tuning of the radios can provide increased visual awareness and redundancy, should a CDU failure occur, or there be a corruption of the data in the FMC. 

Boeing strongly advise to tune the radios to the correct localiser frequency for the approach.  This eliminates the possibility of the radio picking-up another approach from a nearby airport (and providing erroneous data to the crew).  The ILS frequency must never be used with an IAN approach (unless the glideslope is inoperative).  In the case of an inoperative glideslope, the G/S prompt in the CDU must be selected to OFF to ensure that the FMC generated glide path is flown. 

Minimum Descent Altitude (MDA)

As mentioned, an IAN approach is a NPA, and when authorised by the Regulatory Authority non-ILS approaches can be flown to a published VNAV Decision Altitude/Height (DA/H) or to a published MDA (the MDA is used as a decision altitude).  If not authorised to use the MDA as a decision altitude, crews must use the MDA specified for the approach flown.

To comply with the MDA protocols during a constant angle approach where a level off is not planned at the MDA, it is necessary to add +50 feet to the published MDA.  This enables an adequate buffer to prevent incursion below the MDA and adhere to the NPA protocols.

Important Points:

  • IAN uses the FMC database to generate a 3 degree glide path from the FAF to the runway threshold.  IAN does not require the navigation radios to be tuned.  However, it is recommended to tune the radios.

  • Some approaches in the FMC database have a number of glide paths displayed with differing altitudes.  When presented with this scenario, always select the first glide path and altitude.

IAN approach to RJAA ILS X or LOC X Rwy 16L.  The localiser has been captured and the FMA displays FAC in green, while G/P is armed (FMA G/P white).  The vertical Deviation Pointer is displayed as an outlined magenta-coloured diamond (anticipation pointer) while the localiser is displayed as solid magenta (because FAC has been captured).  The source of the runway data is from the FMC (ProSim737 avionics suite)

Using IAN - IAN Annunciations and Displays

IAN can display several visual cues to alert you to the status of the IAN system.  The cues are triggered at various flight phases and are displayed on the attitude display of the Primary Flight Display (PFD) and on the Flight Mode Annunciator (FMA).

Runway Data:   Runway data (runway identifier, approach front course, approach type and distance to threshold) is displayed in the top left area on the PFD when either the localiser or the selected FMC approach is in range of the runway. 

IAN approach to RJAA ILS X or LOC X Rwy 16L.  The localiser and glide path have been captured.  The FMA displays FAC and G/P in green and SINGLE CH is displayed.  The Deviation Pointers, previously in outline (Figure above), are now solid filled.  The aircraft will descent on the glide path to the threshold of the runway (ProSim737 avionics suite)

If the source of the runway data is the navigation radio, then this information will be displayed when the radio is in range of the localiser.  However, if the primary data source is from the FMC (radio not tuned) the runway data will be displayed only after IAN has engaged.   When IAN engages, the runway data will be sourced from the FMC.  This will be evident as the  approach type will be displayed on the PFD.

The approach type (LNAV, FMC, LOC, ILS etc) displayed will depend on what type of approach has been selected from the FMC database. 

Approach Guidance:  Approach guidance (Deviation Pointers) are displayed on the PFD whenever IAN is in range of the runway.  When the Deviation Pointers are displayed, IAN can be used.

Final Approach Course (FAC):  The letters FAC are displayed on the center FMA when IAN is armed.

It stands to reason, that FAC (lateral guidance) usually annunciates prior to G/P (vertical guidance), but depending on the position of the aircraft when APP in pressed, both annunciations may be displayed at the same time.

Glide Path (G/P):  The letters G/P are displayed on the right FMA when IAN is armed.

FMA FAC and G/P Colours:  Two FMA colours are used.  White indicates that the FAC or G/P is armed.  The colour of the FMA display will change from white to green when the aircraft captures either the localiser or glide path. 

Mode Control Panel (MCP):  Arming IAN (pressing the APP button on the MCP) will cause the letters APP on the MCP to be illuminated in green.  The APP light will extinguish when IAN captures the glide path.  

Lateral and Vertical Guidance Deviation Pointers:  Deviation Pointers display the lateral and vertical position of the aircraft relative to the final approach course of the selected runway.  The lateral pointer represents the localiser while the vertical pointer represents the glide path.  The pointers are displayed whenever IAN is in range of the runway. 

The pointers will initially be displayed as either magenta or white-coloured outlined diamonds.  When the aircraft captures either the localiser or glide path, (2 1/2 dots from center) the pointer (s) will change from an outline, to a solid-filed magenta-coloured diamond.

Whether the initial colour of the diamonds is magenta or white depends on which pitch/roll mode has been selected when the aircraft comes into range.

Although the correct name for the pointers is Deviation Pointers, they are often called anticipation pointers, anticipation cues or ghost pointers (ghost pointers being an 'Americanism').

During an IAN approach:

  1. The deviation alerting system will self-test when passing through 1500 feet radio altitude.  The self-test will generate a two-second FAC deviation alerting display on each PFD (the pointers will flash in amber); and,

  2. If the autopilot is engaged, and at low radio altitudes, the scale and Deviation Pointers will turn amber and begin to flash if the deviation from either the localiser or glide path is excessive.

SINGLE CH:  SINGLE CH will be displayed in green, when the aircraft captures the glide path (both the localiser and glide path). At this time, the Deviation Pointers will change from white-coloured outlines to solid magenta-coloured diamonds.  FAC and G/P on the FMA will also be in green.  Additionally, the illuminated APP button on the MCP will extinguish.  At this point, the aircraft will be guided automatically along the glide path.

Flight Mode Annunciations (FMA):  The FMA display will vary depending on the source of the navigation guidance used for the approach.

For localiser-based approaches (LOC, LDS, SDF and ILS (glideslope OUT), the FMA will display VOR/LOC and G/P.  For B/C LOC approaches, the FMA will display B/CRS and G/P.

If lateral course guidance is derived from the FMC (RNAV, GPS, VOR, NDB and TACAN approaches), the FMA will display FAC and G/P.

Ground Proximity Warning System (GWPS) Aural Warnings and Displays:  GWPS warnings will annunciate if at any time the aircraft deviates below the glide path, and failure to disengage IAN at the appropriate altitude will trigger a GPWS aural warning alert ‘autopilot autopilot’ at 100 feet radio altitude.  This is in addition, to the words ‘autopilot’ being displayed on the PFD.

Using IAN – At What Distance Does IAN Work

IAN is not designed to navigate to the airport and its functionality will only be available when the  aircraft is in range of the airport runway; for a straight-in approach, this is at approximately 20 nautical miles.  However, this distance can be considerably less if the aircraft is not on a straight-in course to the runway. 

Important Point:

  • To give you the longest time from which to transition to an IAN approach, try to choose a suitable approach type (from the FMC) that exhibits a ‘more or less’ straight-in approach.

Using IAN – When to Arm and Engage IAN

  1. IAN can be armed at anytime after the Deviation Pointers are displayed on the PFD.  

  2. To arm/select IAN, the flight crew press the APP button on the Mode Control Panel (MCP) similar to performing an ILS approach.

  3. IAN is armed only after clearance for final approach has been received from Air Traffic Control (ATC).  By this time, the aircraft is probably on a straight-in approach.

  4. IAN cannot be used for STARS and is not designed to be engaged when the aircraft is ‘miles’ from the designated runway.  Transition to an IAN approach can be from any of several pitch/roll modes.

  5. IAN (if armed) engages automatically when the either the localiser or glide path is captured.

IAN should only be armed or engaged when:

  1. The guidance to be used for the final approach is tuned and identified on the navigation radio;

  2. An approach has been selected from the FMC database that has a 3 degree glide path;

  3. The appropriate runway heading is set in the course window in the MCP;

  4. The aircraft is on an inbound intercept heading;

  5. ATC clearance for the approach has been received; and,

  6. The approach guidance information is displayed on the PFD along with the lateral and vertical Deviation Pointers.

Disengaging IAN

IAN is either armed, engaged or not engaged. 

If you want to disarm IAN from the arm mode, it is a matter of pressing the APP button on the MCP; the light on the APP button will extinguish and the Deviation Pointers on the PFD will not be visible.

If you want to disengage IAN after it has captured either the localiser or glide path (or both), pressing the APP button on the MCP will do nothing.  In this scenario, to disengage IAN you will need to conduct a Go-Around by selecting TOGA, or change the pitch/roll mode (i.e. Level Change).

Disconnecting the autopilot and flying manually will also disengage IAN; the upside being that the Deviation Pointers will remain displayed on the PFD, until a different pitch/roll mode is selected.

Important Points:

  • If the navigation radio is not tuned to the localiser, the runway data will not be displayed until IAN is engaged, however, the Deviation Pointers will be displayed.

  • IAN can be armed whenever the aircraft is in range of the runway - in other words whenever the Deviation Pointers are displayed on the PFD.

  • When IAN is armed, the FAC and G/P display on the FMA is coloured white.

  • When IAN is engaged (localiser or glide path) the FAC and G/P on the FMA is coloured green.

  • IAN will only engage after capture of either the lateral (FAC) or vertical glide path (G/P).

  • When IAN has captured the glide path, SINGLE CH will be displayed in green in the PFD.

Using IAN - Set-Up and Procedure

The following procedures used for an IAN approach are derived from ILS procedures and are consistent for all approach types. 

  • Select the appropriate approach to use from the FMC database.  Ensure that the selected approach has a glide path.  Do not alter any of the approach constraints. 

  • Set the altitude of the glide path (from the FMC) in the MCP altitude window.

  • Fly the aircraft in whatever pitch/roll mode to the Initial Approach Fix (IAF).  Remember straight-in approaches are best, although offsets between 25 and 45 degrees may be used but not recommended. 

  • Configure the navigation radios to the correct frequency based on the approach type you have selected from the FMC database.  Do not use an ILS frequency.

  • Set the barometric minimums to the altitude published on the approach chart.  Add 50 feet to avoid breaking NPA protocols.

  • Set the correct runway approach course in the MCP course window.

  • Do not select IAN (press the APP button) until the aircraft is in the correct position relative to the approach course. 

  • When approximately 2 miles from the FAF - GEAR DOWN, FLAPS 15, SPEED CHECK.

  • At glide path capture (FAF) – FLAPS 25/30 (landing flaps), SPEED CHECK.

  • At 300 Feet below glide path capture, reset the MCP altitude window to the missed approach altitude.  Failure to wait until the aircraft descends 300 feet will cause the ALT HOLD annunciation to display and the aircraft levelling off.

  • At minima – Disengage autopilot and autothrottle, manually align aircraft to the runway, and follow the Deviation Pointers and Flight Director (FD) cues to the runway threshold.   Maintain the glide path to the flare and do not descend below the displayed glide path. 

Although glide path guidance can be used as a reference once the aircraft descends below the MDA, the primary means of approach guidance is visual.  If not visual at the MDA, execute a Go-Around.  Remember, using IAN is a NPA.

Important Points:

  • When using IAN the aircraft should be configured approximately 2 nautical miles from the FAF (this is one of the fundamental differences between an IAN approach and an ILS approach).

  • Often, the runway may not be aligned with the FMC generated course.  The FCTM states; ‘If the final approach course is offset from the runway centreline, manoeuvring to align with the runway centreline is required.  When suitable visual reference is established, continue following the glide path angle while manoeuvring to align with the runway.

  • Flying an IAN approach is an NPA; it is important to fly visually after passing the MDA.

  • The approach mode (APP on center CTR knob) on the EFIS can be selected when using IAN.  This will display the IAN approach on the Navigation Display as if it is an ILS approach.

Transitioning to an IAN Approach

A flight crew will usually transition to an IAN approach 2 nautical miles prior to the Initial Approach Fix (IAF).  

At this distance from the runway there is not a lot of time to configure the aircraft for landing, and if IAN engages when the aircraft is either above or below the glide path, there is a possibility that the aircraft will abruptly and unexpectedly ascend or descend as the automation attempts to capture the glide path.   Therefore, you must be in diligent that the aircraft’s altitude roughly matches the position of the Deviation Pointers when close to the FAF.

Techniques to Transition Smoothly to an IAN Approach

There are several techniques that can be used to ensure a smooth transition to an IAN approach.

By far the easiest technique to ensure a seamless transition without any abrupt lateral or vertical deviation, is to position the aircraft ‘more or less’ within one dot deviation of the localiser or glide path (Deviation Pointers) prior to selecting IAN. 

In this way you can follow (‘fly’) the Deviation Pointers and engage IAN when the aircraft is more or less aligned with the position of the pointers (similar to how an ILS approach is carried out).

Another technique, is to fly the aircraft until ALT HOLD is displayed in the FMA (assuming that the altitude set in the altitude window in the MCP is approximately 2 nautical miles from the FAF).  Then select IAN.  This should enable the aircraft to smoothly capture the glide path when reaching the FAF.

Importantly, if transitioning to IAN from VNAV, it is prudent to engage SPD INTV to manually control MCP speed.

 

FIGURE 1:  Visual representation of an IAN approach and transition from roll mode. (Copyright Boeing FCTM).

 

Increased Spatial Awareness

Any approach can be busy and it is easy to forget something.  Therefore, it is wize to create a circle at 2 miles from the FAF that can be displayed on the Navigation Display (NP).

One way to accomplish this is by using the FIX page in the CDU. 

In the LEGS page copy to the scratchpad the FAF (click the line on which the FAF is located).   Open the FIX page and upload the FAF (from the scratchpad) to the FIX entry.  To create a dashed circle at 2 nautical miles from the FAF, enter /2 to Line Select Left 1.

Important Points:

  • Maintaining the correct approach speed and altitude is paramount to a successful IAN approach.  If the aircraft is travelling too fast, slowing down after IAN has engaged can be difficult.  Likewise, if the aircraft is too high and IAN engages, the vertical descent can be steep as the aircraft attempts to follow the FMC generated glide path.

  • You must be vigilant and anticipate actions and events before they occur.

Using IAN - Situations To Be Attentive Of

Automation can have its pitfalls and IAN is no different.  However, once potential shortcomings are known, it is straightforward to bypass them.  The most common mistake, especially with virtual pilots, is not following the correct procedure.

Possible 'surprises' associated with an IAN approach are:

1.   Failing to configure the aircraft prior to IAN engaging in FAC and G/P mode.

Unlike an ILS approach, where configuration for landing is initiated when the aircraft captures the glideslope (usually some distance from the runway) during an IAN approach configuration for landing is initiated approximately 2 nautical miles from the FAF.  

If you have not configured the aircraft for landing prior to the capture of the glide path, there may be insufficient time for you to complete recommended actions and checklists.   

If you believe this will occur, there is no reason why configuration cannot occur at an earlier stage.

2.   Forgetting to set the Missed Approach Altitude (MAA) in the MCP.

Failing to wait until the aircraft has descended 300 feet below the glide path capture altitude to reset the MCP altitude to the MAA.  Failure will cause the ALT HOLD annunciation to display and the aircraft leveling off.

3.   Approaching the runway while not on the correct intercept course.

IAN operates flawlessly with straight-in approaches and to a certain extent with approaches up to 45 degrees from the main approach course, however, IAN will not engage if you approach the assigned runway at 90 degrees.  Nor will IAN engage if you are attempting to fly a STAR.

4.   Forgetting to set the initial glide path altitude in the MCP (from the FMC).

A common mistake is not setting the glide path altitude (from the FMC) in the MCP window when configuring the aircraft for an IAN approach.

ProSim737 and IAN

Installing IAN to ProSim-AR Avionics Suite

IAN forms part of the avionics suite, however, for IAN to function it needs to be selected (turned on) in the ProSim-AR IOS (Instructor Operator Station).  The same is for the Navigation Scales (if required).

To turn on IAN, open IOS: Settings/Cockpit Setup Options/Options and place a tick in the appropriate box beside IAN.  A restart of the ProSim-AR main module may be required for the change to take effect.

IAN was introduced to the ProSim737 avionics suite in December 2014.   For the most part, the functionality is reliable and operates as it should (see note 1).

As at writing, known issues are as follows (this may change with Version 3 software updates):

  • ProSim737 does not display the IAN runway data immediately following the engagement of TO/GA during the take-off roll. 

This is incorrect.  In the real aircraft, this information is displayed immediately following the engagement of TO/GA during the take-off roll while.  (further research required)

  • The colour of the approach guidance display (LNAV/VNAV) after TO/GA is engaged is currently white.  This is incorrect.  The colour should be green.

  • At 100 feet AGL, if IAN is engaged and the autopilot remains selected, a flashing AUTOPILOT warning in amber colour will be displayed on the PFD.   This is correct.  However, an audible ‘autopilot’ callout should also be heard.  This is not simulated.

Important Point:

  • ProSim737 users should also note, that for IAN to function within the avionics suite, it must be selected in the cockpit set-up page of the Instructor Station (IOS).

Note 1:   IAN works flawlessly for straight-in approaches (or approaches that are slightly offset).  However, the ProSim software when using some RNAV (RNP) approaches has trouble maintaining the correct vertical profile.

When a RNAV (RNP) approach (not AR) is selected, IAN arms and engages very late in the approach profile (after the FAF).  The altitude that IAN engages is well below the profile used in VNAV; this results in the aircraft diving to capture the IAN glide path.  Once the aircraft is established on the glide path IAN works as it is supposed to. 

The above scenario does not occur with every VNAV (RNP) approach; only those that exhibit a curved radius to fix (RF) profile or short leg profile to the runway threshold.

In the real aircraft (depending on operator and country of operation) IAN can handle all RNAV (RNP) approaches with the exception of RNAV (RNP-AR)  approaches.

In comparison, Precision Manuals Development Team (PMDG) NGX and NGXu can fly the above approaches in IAN.  This has been achieved by artificially replicating the approach using various hidden ‘waypoints’ that their software can read.  In effect, what you are seeing is the aircraft flying over the waypoints that have been overlaid onto the curves in the approach. 

I do not believe ProSim has replicated PMDG’s methodology in their software.

Therefore, if flying an RNAV (RNP) approach using IAN, select only those approaches that are ‘more or less’ straight-in without RF curves or turns; otherwise, use LNAV/VNAV.

BELOW:   Montage of four screen captures of the PFD showing some of the displays generated during an IAN approach (images upper left to right then bottom left to right).  Images 1-3 are sequential. Image 4 is standalone.

Image 1:  Aircraft is LNAV/VNAV approaching the IAF.  The aircraft is too far from the runway for IAN to be in range to operate (RJAA VOR Rwy 16R).

Image 2:  Aircraft is in range of RJAA localiser (tuned in the navigation radio).  Runway data is displayed from localiser and Deviation Pointers are displayed in outlined white-coloured diamonds (anticipation pointers).  The Deviation Pointers will change from white (outline) to magenta (either outline or solid) when either the localiser or glide path is captured.  FAC and G/P are displayed on the FMA in white indicating that IAN has been armed.  Note that if IAN was not armed, only the runway data and Deviation Pointers would be displayed (RJAA VOR Rwy 16R).

Image 3:  IAN has captured the localiser and the lateral Deviation Pointer is displayed as a solid magenta-coloured diamond.  FAC (in green) is displayed on the FMA.  The vertical Deviation Pointer is still in outline and in white (anticipation pointer), as is the G/P on the FMA.   IAN is tracking the localiser (RJAA VOR Rwy 16R).

Image 4:  IAN has engaged.  The runway data is now sourced from the FMC and not the localiser (as in the above examples).  The FMA displays FAC and G/P in green colour, SINGLE CH is displayed, and both Deviation Pointers are solid magenta-coloured diamonds.  IAN has captured the Glide Path (RJAA ILS X or LOC X Rwy 16L).

Montage of four screen captures of the PFD showing some of the displays generated during an IAN approach (images upper left to right then bottom left to right).  Images 1-3 are sequential. image 4 is standalone

Image 1: Aircraft is LNAV/VNAV approaching the IAF.  The aircraft is too far from the runway for IAN to be in range to operate (RJAA VOR Rwy 16R).

Image 2: Aircraft is in range of RJAA localiser (tuned in the navigation radio).  Runway data is displayed from localiser and Deviation Pointers are displayed in outlined white-coloured diamonds (anticipation pointers).  The Deviation Pointers will change from white (outline) to magenta (either outline or solid) when either the localiser or glide path is captured.  FAC and G/P are displayed on the FMA in white indicating that IAN has been armed.  Note that if IAN was not armed, only the runway data and Deviation Pointers would be displayed (RJAA VOR Rwy 16R).

Image 3: IAN has captured the localiser and the lateral Deviation Pointer is displayed as a solid magenta-coloured diamond.  FAC (in green) is displayed on the FMA.  The vertical Deviation Pointer is still in outline and in white (anticipation pointer), as is the G/P on the FMA.   IAN is tracking the localiser (RJAA VOR Rwy 16R).

Image 4: IAN has engaged.  The runway data is now sourced from the FMC and not the localiser (as in the above examples).  The FMA displays FAC and G/P in green colour, SINGLE CH is displayed, and both Deviation Pointers are solid magenta-coloured diamonds.  IAN has captured the Glide Path (RJAA ILS X or LOC X Rwy 16L)

Videos of IAN Approach

 

IAN APPROACH IN SIMULATOR

 
 

IAN APPROACH IN REAL 737-800 AIRCRAFT

 

Final Call

The use of Global Positioning Systems has enabled stabilised approaches at many airports, and the IAN system can take advantage of this technology to provide intuitive displays that support stabilised approaches on a consistent basis. 

Aircraft fitted with IAN are capable of using the APP button located on the MCP to execute an instrument ILS-style approach based on flight path guidance from the FMC.  This makes Non Precision Approaches easier to execute with increased safety.  It also enables a constant descent angle, less engine spooling, wear and tear, and improved passenger comfort.  Furthermore, IAN uses a standardised and consistent procedure, that in addition to improved displays and alerts,  can be used in place of LNAV/VNAV.

Nevertheless, a flight crew must be vigilant when using any automation, especially during the critical approach phase where there is little margin for error.  First and foremost is the innate ability to fly the airliner manually, and although automation such as IAN can enhance safety, it does so at the detriment of manual flying skills.

References

Several sources were used to obtain the information documented in this post, including: personal communication with a B737-800 pilot, the Boeing Flight Crew Training Manual and the Boeing 737 Technical Guide by Chris Brady.

If any discrepancies are noted in this article, please contact me so they can be rectified.

Acronyms and Glossary

  • AGL – Above Ground Level

  • APP – Approach button located on MCP

  • CDU – Control display Unit (glorified keyboard)

  • EFIS – Electronic Flight Instrument Display

  • FAC – Final Approach Course

  • FAF – Final Approach Fix

  • FMA – Flight Mode Annunciator

  • FMC – Flight Mode Computer

  • FMS – Flight Management System

  • G/P – Glide Path (Non Precision Approach / NPA)

  • G/S – Glideslope (Precision Approach / PA)

  • IAF – Initial Approach Fix

  • IAN – Integrated Approach Navigation

  • ILS – Instrument Landing System

  • IMC – Instrument Meteorological Conditions

  • MAP – Missed Approach Point

  • MCP – Mode Control Panel

  • MDA - Minimum Descent Altitude

  • ND – Navigation Display

  • PFD – Primary Flight Display

  • RA – Radio Altitude

  • RF – Radius to fix

  • RNAV (RNP-AR) Approach - RNP-AR is a subset of an RNAV approach that requites authorization (RA) to fly

  • Select – To select , arm or engage something

  • STAR  -  Standard Terminal Arrival Route

Review and Updates

  • 25 August 2017 - Review and content updated.

  • 03 December 2019 - Review and content updated.

  • 29 October 2019 - Review and content updated.

  • 28 April 2021 - Review and content updated.  Release of .pdf.

  • 21 December 2022 - Updated to latest procedure changes.

How To Calibrate Flight Controls in Flight Simulator Using FSX, Prepar3D or FSUIPC

Imagine for a brief moment that you are driving an automobile with a wheel alignment problem; the vehicle will want to travel in the direction of the misalignment causing undue stress on the steering components, excessive tyre wear, and frustration to the driver. 

Similarly, if the main flight controls are not accurately calibrated; roll and pitch will not be correctly simulated causing flight directional problems, frustration and loss of enjoyment.

Flight controls are usually assigned and calibrated in a two-step process, first in Windows, then either by using the internal calibration provided in the FSX, Prepar3D, ProSim737, or using the functionality provided by FSUIPC.

It's often easier to think of calibrating controls as a two-stage process - Primary Calibration (in Windows) and Secondary Calibration (in Prosim737, flight simulator, or FSUIPC).

In this post, the method used to assign and calibrate the main flight controls (ailerons, elevators and rudder pedals) in FSX, Prepar3D and FSUIPC will be discussed.  Internal calibration in ProSim737 will not be discussed.  The common theme will be the calibration of the ailerons, although these methods can calibrate other controls. The calibration of the throttle unit will not be discussed.

Many readers have their controls tweaked to the tenth degree and are pleased with the results, however, there are 'newcomers' that lack this knowledge.  I hope this post will guide them in the 'right direction'.

STEP 1 - Calibrating and Registering Control Devices in Windows (Primary Calibration)

All flight controls use a joystick controller card or drivers to connect to the computer.   This card must be registered and correctly set-up within the Windows operating system before calibration can commence.  

  • Type ‘joy’ into the search bar of the computer to open the ‘game controllers set-up menu’ (set-up USB game controllers).  This menu will indicate the joystick controller cards that are attached to the computer (Figure 1). 

  • Scroll through the list of cards and select the correct card for the flight control device.  Another menu screen will open when the appropriate card is selected.  In this menu, you can visually observe the movements of the yoke, rudder pedals and any yoke buttons that are available for assignment and use.  The movement of the controls will be converted to either a X, Y or Z axis (Figure 1).

  • Follow the on-screen instructions, which usually request that you move the yoke in a circular motion, stopping at various intervals to depress any available button on the device.  The same process is completed for the movement of the control column (forward and aft) and the rudder pedals (left and right).  Once completed, click ‘save’ and the profile will be saved as an .ini file in Windows.

 

FIGURE 1:  Windows Joystick Calibration User Interface or Game Controller Interface in (Primary Calibration of joystick controllers)

 

Registration is a relatively straightforward process, and once completed does not have to be repeated, unless you either change or reinstall the operating system, or recover from a major computer crash, which may have corrupted or deleted the joystick controller’s .ini file. 

STEP 2 - Assigning Flight Control Functionality in FSX and Prepar3D (Secondary Calibration)

  • Open FSX or Prepar3D and select from the menu ‘Options/Settings/Controls’.  The calibration, button key and control axis tab will open (Figure 2).

  • Select the ‘Control Axis’ tab. When the tab opens, two display boxes are shown.  The upper box displays the joystick controller cards connected to the computer while the larger lower box displays the various functions that can be assigned.  The functions that need to be assigned are ailerons, elevators and rudders.

  • Select/highlight the appropriate entry (i.e. ailerons) from the list and click the ‘Change Assignment’ tab.  This will open the ‘change assignment’ tab (Figure 3).  Physically move the yoke left and right to its furthest extent of travel and the correct axis will be assigned.  To save the setting, click the ‘OK’ button. 

  • When you re-open the ‘Control Axis’ tab you will observe that the function now has an axis assigned and this axis is identical to the axis assigned by Windows when the device was registered.  You will also note a small box labelled ‘Reverse’.  This box should be checked (ticked) if and when the movement of the controls is opposite to what is desired (Figure 3). 

  • Save the set-up by clicking the ‘OK’ button.

 

FIGURE 2:  FSX Settings and Controls Tab (Prepar3D menus are similar)

 
 

FIGURE 3:  FSX Change Assignment Menu

 

STEP 3 - Calibrating Flight Controls in FSX and Prepar3D

The flight control functions that have been assigned must now be calibrated to ensure accurate movement.   

  • First, select and open the ‘Calibration’ tab.  Ensure the box labelled Enable Controllers(s)’ is checked (ticked) (Figure 4).

  • The correct joystick controller card must be selected from the list displayed in the box beside the controller type label.

Whether simple or advanced controls are selected is a personal preference.  If advanced controls are selected, the various axis assignments will be shown in the display box.  The axis, sensitivity and null zone can be easily adjusted using the mouse for each of the flight controls (ailerons, elevators and rudders). 

Concerning the sensitivity and null zone settings.  Greater sensitivity causes the controls to respond more aggressively with minimal physical movement, while lesser sensitivity requires more movement to illicit a response.  It is best to experiment and select the setting that meets your requirement.

The null zone creates an area of zero movement around the centre of the axis.  This means that if you create, for example, a small null zone on the ailerons function, then you can move the yoke left and right for a short distance without any movement being registered. 

Creating a null zone can be a good idea if, when the flight controls are released, their ability to self-center is not the best.  Again, it is best to experiment with the setting.  To save the settings click the ‘OK’ button.  

 

FIGURE 4:  FSX Settings and Controls

 

This completes the essential requirements to calibrate the flight controls; however, calibration directly within FSX or Prepar3D is rather rudimentary, and if greater finesse/detail is required then it's recommended to use FSUIPC.  

FSUIPC

FSUIPC pronounced 'FUKPIC' is an acronym for Flight Simulator Universal Inter-Process Communication, a fancy term for a software interface that allows communication to be made within flight simulator.  The program, developed by Peter Dowson, is quite complex and can be downloaded from the website.  FSUIPC allows many things to be accomplished in flight simulator; however, this discussion of FSUIPC, will relate only to the assigning and calibrating of the flight controls.

It's VERY important that if FSUIPC is used, the FSX or Prepar3D ‘Enable Controllers’ box must be unchecked (not ticked) and the joystick axis assignments, that are to be calibrated in FSX or Prepar3D be deleted.  Deleting the assignments in optional, however, recommended.  The flight controls will only function accurately with calibration from one source (FSX, Prepar3D or FSUIPC)

STEP 1 - Assigning Flight Controls Using FSUPIC

  • Open FSX or Prepar3D and from the upper menu on the main screen select Add Ons/FSUIPC’.  This will open the FSUIPC options and settings interface (Figure 5).

  • Navigate to the ‘Axis Assignment’ tab to open the menu to assign the flight controls to FSUIPC for direct calibration (Figure 6).

  • Move the flight controls to the full extent of their movement.  For example, turn the yoke left and right or push/pull the control column forward and aft to the end of their travel.  You will observe that FSUIPC registers the movement and shows this movement by a series of numbers that increase and decrease as you move the flight controls.  It will also allocate an axis letter.

  • At the left side of the menu (Figure 6) is a label ‘Type of Action Required’; ensure ‘Send Direct to FSUIPC Calibration’ is checked (ticked).  Open the display menu box directly beneath this and select/highlight the flight control functionality (ailerons, elevator or rudder pedals).  Check (tick) the box beside the function.

 

FIGURE 5:  FSUPIC Main Menu

 
 

FIGURE 6:  FSUIPC Axis Assignments

 
 
 

Calibrating Flight Controls Using FSUIPC

  • Select the Joystick Calibration’ tab.  This will open an 11 page menu in which you calibrate the flight controls in addition to other controls, such as multi-engine throttles, steering tiller, etc.  Select page 1/11 'main flight controls' (Figure 7)

  • Open the ‘Aileron, Elevator and Rudder Pedals’ tab (1 of 11 main flight controls).  Note beside the function name there are three boxes labelled ‘set’ that correspond to min, centre and max.  There is also a box labelled ‘rev’ (reverse) which can be checked (ticked) to reverse the directional movement of the axis should this be necessary.  The tab labelled ‘reset’ located immediately below the function name opens the calibration tool.  The ‘profile specific’ box is checked (ticked) when you want the calibration to only be for a specific aircraft; otherwise, the calibration will be for all aircraft (global).  The box labelled filter is used to remove spurious inputs if they are noted and for the most part should be left unchecked (not ticked).  The tab labelled ‘slope’ will be discussed shortly.

  • Click the ‘reset’ tab for the ailerons and open the calibration tool.  Move the yoke to the left hand down position to its furthest point of travel and click ‘set’ beneath max.  Release the yoke and allow it to center.  Next, move the yoke to the right hand down position to its furthest point of travel and click ‘set’ beneath min.  Release the yoke and allow it to center.  If a null zone is not required, click the ‘set’ beneath centre.

If a problem occurs during the calibration, the software will beep indicating the need to restart the calibration process.  The basic calibration of the yoke is now complete.  However, to achieve greater accuracy and finesse it is recommended to use null zones and slope functionality.

 

FIGURE 7:  FSUIPC Joystick Calibration (ailerons, elevator and rudder)

 

Null Zones

The null zone concept has been discussed earlier in this article.

If a null zone is required either side of the yoke center position, move the yoke to the left a short distance (1 cm works well) and click ‘set’ beneath centre.  Next, move the yoke 1 cm to the right and click ‘set’ beneath centre.  

As you move the yoke you will observe in the side box a series of numbers that increase and decrease; these numbers represent the movement of the potentiometer.  It is not important to understand the meaning of the numbers, or to match them.

Replicate the same procedure to calibrate the elevators and rudder pedals (and any other controller devices)

To save the setting to the FSUIPC.ini file click ‘OK’

It is a good idea to save the FSUIPC.ini file as if a problem occurs at a later date, the calibration file can easily be resurrected.  The FSUIPC.ini file is located in the modules folder that resides in the FSX or Prepar3D route folder.  

Slope Functionality

Slope functionality is identical to the sensitivity setting in FSX and Prepar3D.  Decreasing the slope (negative number) causes the controls to be more sensitive when moved, while a positive number reduces the sensitivity. To open the slope calibration, click the ‘slope’ tab.  This will open a display box with an angled line.  Manipulating the shape of this line will increase or decrease the sensitivity.

Slope functionality, like the null zone requires some experimentation to determine what setting is best.  Different flight controls have differing manufacturing variables, and manipulating the slope and null zone allows each unit to be finely tuned to specific user preferences.

Does FSUIPC make a Difference to the Accuracy of the Calibration ?

In a nutshell – yes.  Whilst the direct assignment and calibration in FSX and Prepar3D is good, it's only rudimentary.  FSUIPC enables the flight controls to be more finely adjusted equating to a more stable and predictable response to how the controls react.

Potential Problems

If using FSUIPC for axis assignment and calibration, remember to uncheck (not tick) the ‘enable controller’ box and delete the axis assignments in FSX or Prepar3D – only one program can calibrate and control the flight controls at any one time.  If calibration from both FSX or Prerpar3D and FSUIPC are used at the same time, spurious results will occur when the flight controls are used.

If the calibration accuracy of the flight controls is in doubt (spurious results), it is possible that the simulator software has inadvertently reassigned the axis assignments and enabled calibration.  

There's an intermittent issue in FSX and Prepar3D where the software occasionally enables the controllers and reassigns the axis assignment, despite these settings having been unchecked (not enabled).  If a problem presents itself, it's best to double check that this has not occurred.  This is why I recommend that the settings be deleted, rather than just being unchecked.

Final Call

Many enthusiasts are quick to blame the hardware, avionics suite, or aircraft package, when they find difficulty in being able to control the flight dynamics of their chosen aircraft.  More often than not, the problem has nothing to do with the software or hardware used, but more to do with the calibration of the hardware device.

The above steps demonstrate the basics of how to calibrate the flight controls - in particular the ailerons.  If care is taken and you are precise when it comes to fine-tuning the calibration, you maybe surprised that you are now able to control that 'unwanted pitch' during final approach.

Further Information and Reading

Documents relating to FSUIPC can be found in the modules folder in your root director of flight simulator on your computer.  The below link addresses how to calibrate the steering tiller.

Cost Index (CI) Explained

Screengrab from CDU screen showing the Cost Index page in PERF INIT

The Cost Index (CI) function of the Flight Management Computer (FMC) is an important and often misunderstood feature of a modern airliner.  Apart from real-world cost savings in fuel, differing CI values alter airspeeds used during the climb, cruise and descent phase of a flight.  Certainly, the CI value is not a pressing issue for a virtual pilot flying a simulator, but to an operating airline in a fuel-expensive environment, differing CI values can equate to thousands of dollars saved.

CDU showing Cost Index.  A CI of 11 will generate significant savings as opposed to a value of 300.  FMC is produced by Flight Deck Solutions (FDS)

Simply explained, the CI alters the airspeed used for economy (ECON) climb, cruise and descent; it is the ratio of the time-related operating costs of the aircraft verses the cost of fuel.  If the CI is 0 the FMC calculates the airspeed for the maximum range and minimum trip fuel (lower airspeed).  Conversely, if the CI is set to the highest number, the FMC will calculate higher airspeeds (Vmo/Mmo) and disregard any cost savings.

In practice, neither of the extreme CI values is used; instead, many operators use values based on their specific cost structure, modified if necessary to the requirements of individual flight routes.  Therefore, the CI values will typically vary between airline operators, airframes, and individual routes.

Access to the CI is on page 1 of 2 in the ‘ACT PERF INIT’ page of the Control Display Unit (CDU) of the Flight Management Computer (FMC).  It is on the left hand side lower screen and displayed ‘COST INDEX’.  The range of the CI is 0-200 units in the Boeing 737 Classics and 0-500 units in the Next Generation airframes.

Fuel Verses Time and Money

There is a definite benefit to an airline’s fuel cost when the CI is used correctly.  Bill Roberson in his excellent article ‘Fuel Conservation Strategies: Cost Index Explained’ states the difference between a CI value of 45 verses a CI value of 12 for a B737-700 can be in the order of $1790 - $1971 USD depending upon the price of fuel; the time gained by selecting the higher CI value (CI-12) is in the area of +3 minutes.  Although these time savings appear minimal, bear in mind that airlines are charged by the minute that they remain at the gate.

Granted fuel savings are important, but so is an airline’s ability to consistently deliver on time, its passengers and cargo. It is a fine line between cost savings and time management, and often the CI will be changed before a flight to cater towards unscheduled delays, a change in routing, short or long haul flights, cost of fuel, aircraft weight, or favourable in-flight weather conditions (i.e. tailwind).

A higher CI value may be used by airlines that are more interested in expediency than fuel cost savings; the extra revenue and savings generated by an airline that consistently meets its schedule with less time spent at the gate may be equal to, or greater than any potential fuel savings.  Boeing realizes that as fuel costs increase, airlines are reticent to only expend what is absolutely necessary; therefore, Boeing works with its clients (airlines) to determine, based upon their operating style, the most appropriate CI value to use.

Changing CI on The Fly'

Although not standard practice, the CI value can be changed during the flight.  Any change in the CI will reflect on climb, descent and cruise speeds, which will be updated in the CDU and can be monitored via the 'progress' page of the CDU. 

 

Figure 1: compares the cost index values against climb, cruise, descent and recommended altitudes for the Boeing 757 air frame.  Although these figures do not relate to the Boeing 737-800 NG, they do provide an insight into the difference in calculated CI values for climb, cruise, descent and recommended altitude

 

Is the Cost Index Modelled in all Avionics Suites

The CI is modelled by the avionics suite, and whether it is functional depends on the suite used.  ProSim737 and Sim Avionics have the CI modelled and functional, as does Project Magenta (PM), Precision Manuals Development Group (PMDG) and I-Fly.  

Airline Cost Index Values

As stated above, the inputted CI value is variable and is rarely used at either of the extreme ranges.  The following airline list of B737-800 carriers is incomplete, but provides guidance to CI values typically used.  Note that the CI is variable and the values below may alter dependent upon airlines operations.  A more detailed list can be found on the AVSIM website (Thanks Dirk (ProSim737 forum) for the link).

  • Air Baltic CI – 28

  • Air Berlin CI – 30

  • Air France CI – 35

  • Air Malta CI – 25

  • Air New Zealand CI – 45

  • Austrian CI – 35

  • Fly GlobesSpan CI – 13-14

  • Fly Niki CI – 35

  • Hamburg International CI – 30

  • KLM CI – 15/30

  • Nord Star CI – 30

  • Norwegian CI – 15

  • QANTAS CI – 40

  • Ryanair CI – 30

  • SAS CI – 45-50

  • South African CI – 50

  • South West CI – 36

  • Thomson Airways CI – 9

  • Ukraine International Airlines CI – 28

  • WestJet CI – 20-25

The CI is an important feature of the avionics suite that should not be dismissed.  Whilst real-world fuel savings are not important during simulator flying, the altered airspeeds that a different CI value generates can have consequences for the distance able to be flown, climb, descent and cruise speeds.

Acronyms

  • CDU – Control Display Unit

  • CI – Cost Index

  • FMC – Flight Management Computer

  • Mmo – Maximum operating speed

  • Vmo – Maximum operating limit speed

Navigraph Charts Cloud and Charts Desktop - Review

The traditional leather-bound binder that contains hundreds of Jeppesen charts.  This particular binder belonged to Gene Mac Farland, a Captain who flew for 30 years with Continental Airlines

One aspect of simulation which is identical to the real thing is the use of charts.  Whether a professional real-world pilot approaching Heathrow International or a virtual pilot, the correct approach chart will need to be consulted, interpreted correctly, and followed if a safe landing is to be assured.

Not so long ago, Jeppesen Charts provided the mainstay for all professional navigation charts and these thin paper charts were carried in a brown leather binder.  Pilots carried a number of binders with them to allow access to the appropriate chart where necessary.  It was the responsibility of the pilot to ensure that the contents were up-to-date and reflected the latest chart; a tedious task.

Later years have witnessed the introduction of computers and several companies, including Jeppesen, have provide electronic charts that can be viewed using laptops, smart phones and apple i-pads.  The days of  lugging binders is now over, and a binder such the one depicted in the above photograph have become, for the most part, keepsakes and door stops.

Collecting Charts

Virtual pilots have a tendency to ‘collect’ charts from innumerable locations.  The collection can become quite large, and often it is difficult to collate the charts in such a way that it is easy to find the wanted chart, let alone know whether the chart is the most accurate up-to-date version.  

Navigraph

Serious simulator enthusiasts have probably heard of the European-based company Navigraph.  For several years the company has been responsible for the production and distribution of AIRAC cycles that are used to update the Flight Management System (FMS) to maintain the accuracy of the navigation database.

AIRAC Cycles

AIRAC is an acronym for Aeronautical Information Regulation And Control.  An AIRAC cycle contains the current aviation regulations, procedures, and charts for airport, runway, airspace, Instrument Approach Procedures (IAP), Standard Terminal Arrival Routes (STAR), and Standard Instrument Departures (SID).  The AIRAC cycle updates the database used by the aircraft's FMC/CDU.

Without this up-to-date data it is not possible to program the FMC/CDU with any degree of accuracy. 

Navigraph provide a subscription service to AIRAC cycles which are updated several times a year (usually there are thirteen cycles per year)

Charts Database

Navigraph, in addition to supplying regular updated AIRAC cycles, has implemented three additional products:  airport charts, video tutorials and en-route charts.  These products are available via an annual subscription from a data cloud database and/or desktop program.

 

Area of coverage of Navigraph charts (image courtesy of Navigraph).  This link provides an up-to-date coverage area for Navigraph charts

 

Airport charts include up-to-date charts for approximately 13,000 airports worldwide. Chart information includes at a minimum: runway data, instrument approach procedures, standard terminal arrival routes and standard instrument departures.  To date, there are approximately 40,000 charts and the number is regularly being expanded with quarterly updates.

Furthermore, several dozen video tutorials instructing in the correct interpretation and use of approach charts are available in addition to dozens of en-route charts which include upper and lower airways.  

The information depicted on the charts originates from suppliers of real-world aviation charts (Navtech) and depicts the latest data, in a format that has been designed by human factor research to be user friendly.

Unlike other companies that have attempted to provide charts for virtual pilots (for example, sim charts), Navigraph charts have been vector scanned in high resolution providing a dataset that can be easily enlarged as required, read, and if required printed in high definition.  Additionally, the information is in colour.  

Ease of Access - Key Feature

In a nutshell, Navigraph has allowed a virtual pilot access to information that otherwise would require considerable collating, revision, and pose difficulties concerning easy access when required. The datasets can be immediately assessed on demand either from a data cloud (charts cloud) or via a desktop program (charts desktop).  

Granted there are many on-line resources to find, read and print approach charts - some better than others.  However, the Navigraph search functionality allows the right chart to be found, quickly and easily, at the appropriate time.  In my opinion, this promotes Navigraph over others programs and on-line resources.

Screen capture of charts cloud showing list of available charts for Hobart, Tasmania, Australia.  The chart can be viewed full screen and can be enlarged as required.  Note this screen capture is of a very reduced quality

Charts Cloud

The cloud provides an easy to use on-line interface, with an effective search functionality that can be accessed using different platforms, including portable devices such as i-pads and smart phones.  To allow speedier future access, charts can be placed in a favourites list or listed in a paper clip (a separate folder) that is linked to your account.  The charts cloud does not allow printing or permanent downloading of a chart and charts are only available when on-line.  Access to the data sets ceases after the annual subscription has expired.

The speed at which charts cloud database can be accessed relates to the Internet connection being used; however, for the most part the server Navigraph uses provides consistent access that should be suitable for most users, with the exception of those that use dial-up.

Navigraph Charts 4 desktop opening screen

Charts Desktop

The charts desktop is a program supplied by Navigraph (free of charge), which resides on your computer and allows charts to be downloaded for access when off-line.  This has the obvious benefit of faster access times if the Internet connection is less than optimal.

The program has the capability to list charts as favourites for easy and fast access, in addition to having a highly responsive search engine.  Unlike the charts cloud, the charts desktop allows access to any chart that has been downloaded after the annual subscription has expired; however, after the subscription has expired the charts cannot be updated.  Another benefit in using the program is that charts can be printed.

Updates

Navigraph regularly updates the database with additional charts and changes to pre-exisiting charts.  The program advises you of an update when you mouse over the chart name.  The program will then allow you to maintain the existing chart or download and replace the chart with the newer version.   Updates are usually half a dozen times a year

Is it a Worthwhile Investment ?

Whether Navigraph chart data is of benefit to you will depend upon how many different airports you fly from and to, how often you fly, and how much money you are prepared to shell out for the convenience and ease of accessed chart information.  Certainly, it is far easier to maintain a collection of charts electronically than store several binders of paper!

A subscription (using the charts cloud or desktop program) is currently 47.92 Euro excluding VAT.  This price allows unlimited access to all charts, and includes the ability to view all instructional videos, which have been professionally produced and run each for approximately 8 minutes duration.  Short of a subscription, individual charts and videos can be purchased separately for a once off fee.  In contrast to purchasing the Jeppesen electronic charts from Jeppesen or an ongoing seller, this fee is reasonable.

Short Review

I elected to not write an in-depth review of Navigraph and their products as the Navigraph interface and their products are constantly being upgraded.  A review may soon be out-of-date!  This review has dealt primarily with the airport charts and has not examined in details the en-route charts or training videos that come packaged with a charts cloud subscription.

Navigraph’s website is very comprehensive and includes several images of their charts that depict the high quality of their product, along with examples of the various programs and how they operate. 

Whilst the charts are not 100% identical to Jeppesen real-world counterparts (various information has been merged and interpolated), the detailed datasets, consistent high quality, and ease of searching and accessibility, make the administrative aspect of virtual flying more enjoyable.

Disclosure

The content in this post is not meant to directly promote or endorse Navigraph.  To trial this software, I purchased a subscription to the charts cloud and charts desktop.  To date, I have been very pleased with the quality of the Navigraph charts and will probably continue to supplement my real-world paper charts with information from this source.

UPDATE: There have been massive changes and improvements to Navigraph since this article was published. A more up-to-date review will be written at some stage. Navigate to the Navigraph website.

B737-600 NG Fire Suppression Panel (Fire Handles) - Evolutionary Conversion Design

737-600 Next Generation Fire Suppression Panel installed to center pedestal.  The lights test illuminates the annunciators

737-600 NG Fire Suppression Panel light plate showing installed Phidget and Phidgets relay card

Originally used in a United Airlines 737-600 Next Generation aircraft and purchased from a wrecking yard, the Fire Suppression Panel has been converted to use with ProSim737 avionic suite. The panel has full functionality replicating the logic in the real aircraft.

This is the third fire panel I have owned.  The first was from a Boeing 737-300  which was converted in a rudimentary way to operate with very limited functionality - it was backliut and the fire handles lit up when they were pulled. The second unit was from a 737-600; the conversion was an intermediate design with the relays and interface card located outside the unit within the now defunct Interface Master Module (IMM).  Both these panels were sold and replaced with the current 600 Next Generation panel. This panel is standalone, which means that the Phidget and relay card are mounted within the panel, and the connection is via the Canon plugs and one USB cable.

I am not going to document the functions and conditions of use for the fire panel as this has been documented very well in other literature.  For an excellent review, read the Fire Protection Systems Summary published by Smart Cockpit.

Nomenclature

Before going further, it should be noted that the Fire Suppression Panel is known by a number of names:  fire protection panel, fire control panel and fire handles are some of the more common names used to describe the unit.

Panel with outer casing removed showing installation of Phidget and and relays.  Ferrules are used for easier connection of wires to the Phidget card.  Green tape has been applied to the red lenses to protect them whilst work is in progress

Plug and Fly Conversion

What makes this panel different from the previously converted 737-600 panel is the method of conversion.  

Rear of panel showing integration of OEM Canon plugs to supply power to the unit (5 and 28 volts).  The USB cable (not shown) connects above the middle Canon plu

Rather than rewire the internals of the unit and connect to interface cards mounted outside of the unit, it was decided to remove the electronic boards from the panel and install the appropriate interface card and relays inside the unit.  To provide 5 and 28 volt power to illuminate the annunciators and backlighting, the unit uses the original Canon plugs to connect to the power supplies (via the correct pin-outs).  Connection of the unit to the computer is by a single USB cable.  The end product is, excusing the pun - plug and fly.

Miniaturization has advantages and the release of a smaller Phidget 0/16/16 interface card allowed this card to be installed inside the unit alongside three standard relay cards.  The relays are needed to activate the on/off function that enables the fire handles to be pulled and turned.

The benefit of having the interface card and relays installed inside the panel rather than outside cannot be underestimated.  As any serious cockpit builder will attend, a full simulator carries with it the liability of many wires running behind panels and walls to power the simulator and provide functionality. Minimising the number of wires can only make the simulator building process easier and more neater, and converting the fire handles in this manner has followed through with this philosophy.

Complete Functionality including Push To Test

The functionality of the unit is only as good as the flight avionics suite it is configured to operate with, and complete functionality has been enabled using the ProSim737 avionics suite. 

One of the positives when using an OEM Fire Suppression Panel is the ability to use the push to test function for each annunciator.  Depressing any of the annunciators will test the functionality and cause the 28 volt bulb to illuminate.  This is in addition to using the lights test toggle located on the Main Instrument Panel (MIP) which illuminates all annunciators simultaneously.

At the end of this post is a short video demonstrating several functions of the fire panel.

The conversion of this panel was not done by myself.  Rather, it was converted by a gentleman who is debating converting OEM  fire panels and selling these units commercially; as such, I will not document how the conversion was accomplished as this would provide an unfair disadvantage to the person concerned.

Differences - OEM verses Reproduction

There are several reproduction fire suppression panels currently available, and those manufactured by Flight Deck Solutions and CP Flight (Fly Engravity) are very good; however, pale in comparison to an OEM panel.  Certainly, purchasing a panel that works out of the box has its benefits; however the purchase cost of a reproduction panel is only marginally less that using a converted OEM panel.

By far the most important difference between an OEM panel and a reproduction unit is build quality.  An OEM panel is exceptionally robust, the annunciators illuminate to the correct light intensity with the correct colour balance, and the tension when pulling and turning the handles is correct with longevity assured.  I have read of a number of users of reproduction units that have broken the handles from overzealous use; this is almost impossible to do when using a real panel.  Furthermore, there are differences between reproduction annunciators and OEM annunciators, the most obvious difference being the individual push to test functionality of the OEM units.

737-300 Fire Suppression Panel. Note the different location of korrys

Classic verses Next Generation Panels

Fire Suppression Panels are not difficult to find; a search of e-bay usually reveals a few units for sale.  However, many of the units for sale are the older panels used in the 737 classic aircraft. 

Although the functionality between the older and newer units is almost identical, the similarity ends there.  The Next Generation panels have a different light plate and include additional annunciators configured in a different layout to the older classic units.

737-300 Fire Suppression Panel. this panel is slightly different to the above panel as it has extra korrys for moreadvanced fire logic

One of the reasons that Next Generation panels are relatively uncommon is that, unless unserviceable, the panels when removed from an aircraft are sold on and installed into another aircraft.

Video

The video demonstrates the following:

  • Backlighting off to on (barely seen due to daylight video-shooting conditions)

  • Push To Test from the MIP (lights test)

  • Push To Test for individual annunciators

  • Fault and overhead fire test

  • Switch tests; and,

  • A basic scenario with an engine 1 fire.

NOTE:  The video demonstrates one of two possible methods of deactivating the fire bell.  The usual method is for the flight crew to disable the bell warning by depressing the Fire Warning Cut-out annunciator located beside the six packs (part of the Master Caution System) on the Main Instrument Panel (MIP).  An alternative method is to depress the bell cut-out bar located on the Fire Suppression Panel. 

 

737-600 Fire Suppression Panel

 

Boeing Chart (Map) Lights - B737NG and Classic B737 Types

Chart lights removed from a Boeing 737-800 NG airframe.  Colour, appearance and design is different to the the older style lights used in the classic airframes

Chart lights (also called map lights) are attached adjacent to the overhead panel and are used to illuminate, in particular, the chart holders attached to the yoke during night time operations. There are two lights, one on the Captain-side and the other on the First Officer-side.

The light from the unit can be focused from a wide angle to a narrow beam by twisting the focus ring at the front of the light.  Each light can also be swiveled and moved vertically to position the light beam in a particular place on the flight deck (for example, chart plates).

The switches (knobs) that turn the light on and off are located on the sidewalls of the Captain and First Officer side of the flight deck.  The light can be dimmed if necessary by rotating the knob.

The chart lights are mounted near each the eyebrow windows.

Chart light removed from a Boeing 737-400 airframe.  The light has a differing focus ring, appearance and colour to the NG style (click to enlarge).  I believe this style of chart light is also used on the B747 aircraft

Two Styles (Classic and NG)

To my knowledge, there are two styles of chart light that have been used in the Boeing 737. The fatter style used in the classic series airframes and the more slender style used in the in the Next Generation airframes.  I have little doubt that there may also be small differences between light manufacturers.

The main aesthetic difference between the older 737 classic airframe chart lights and the newer Next Generation style is that the older lights are squatter and a little fatter in shape; the Next Generation is longer, more slender-looking and has a smaller footprint.

Chart light showing reflector dish on inner side of end cap.  This style is the older light type used in the 737 classic airframes

Other differences are internal and relate to how the light is focused on the lens and the physical shape of the focus rung used to alter the angle of light coverage.

Ingenious Design

Both style lights have an ingenious design to allow the light to be focused.   Removing the rear plate of from the older style light reveals the inner side to be a circular reflector dish (see image) which evenly distributes the throw of light when the unit is set to wide angle. 

The newer Next Generation style lights use an aperture blade which either enlarges or contracts as the focus ring is turned.  This design is identical to how a camera aperture works.

Both styles can use either a 12 or 28 Volt bulb; the later will generate a brighter light.  Connection is direct to the power supply (12 or 28 Volt).  An interface card is not required.

The NG style chart light.  A blade aperture controls the amount of light that is reflected onto the thick lens glass

Original Equipment Manufacturer (OEM)

Put bluntly, you cannot achieve a more realistic end product than when using a real aviation part.  Genuine parts, although at times difficult to find, are built to last; if they can withstand the continue abuse of pilots in a flight deck then they are more than adequate for home simulation use. 

It's true that while some parts appear used with faded and missing paint, they can easily be cleaned up with a fresh coat of paint.  Personally, I prefer the worn-appearance.

Advertise With Me - Thank You, But No Thanks....

When I began this website, I had little insight that the site would be as regularly visited as it is; last month the site received 152,555 visits from different ISP addresses not including robots & spiders.

Can We Advertise With You....

Two companies that produce flight simulation merchandise have contacted me asking that I write about their products and actively support heir products on this website.  In return for my favourable response, the company will give me free products and a percentage of any sales that are generated from my website.

'Money is money' and everyone can probably always use a little more.  The funds generated will probably cover the annual cost of hosting this site and leave a little left over to pay the power bill…

I have thought about the offer; however, have decided to not support or promote any company for the sake of profit… 

Flaps 2 Approach was developed to document the building progress of a Boeing 737-800 simulator, and evolved to include technical and theoretical information. If I commercialise this website, the unbiased nature of the site will be compromised and the site will become another 'megahorn' promoting 'coloured beads and trinkets'.  To alter the style, flare and direction of the site from essentially what is a hobby-based website to that of market-orientated site, does not sit favourably with me; therefore, the website will continue along the same footing.

I believe it’s important not to be swayed by business (and money) and to continue to tell it as it is, or at least how I see it…

I dislike Advertising Pop-Ups....

I dislike the blanket-style of unwanted advertising that many websites have, whether it is generated by google or as adverts for products from particular companies, and  I certainly do not want to add to this advertising glut.

I hope you agree with this philosophy and continue to enjoy the website and its content.   'Blue Skys',   

B737-800 NG Flight Mode Annunciator (FMA)

oem Flight Mode annunciator (737-800)

Automatic Flight System - Background

The Boeing 737-80 has a relatively sophisticated Automatic Flight System (AFS) consisting of the Autopilot Flight Director System (AFDS) and the Autothrottle (A/T).  



The Boeing 737-800 NG has a relatively sophisticated Automatic Flight System (AFS) consisting of the Autopilot Flight Director System (AFDS) and the Autothrottle (A/T).   The system is as follows:

  • The N1 target speeds and limits are defined by the Flight Management Computer (FMC) which commands airspeeds used by the A/T and AFDS;

  • The A/T and AFDS are operated from the AFDS Mode Control Panel (MCP), and the FMC from the Control Display Unit (CDU); 

  • The MCP provides coordinated control of the Autopilot (A/P), Flight Director (F/D), A/T and altitude alert functions; and,

  • The Flight Mode Annunciator (FMA), located on the Captain and First Officer side of the Primary Flight Display (PFD),  displays the mode status for the AFS.

If you read through the above slowly and carefully it actually does make sense; however, during in-flight operations it can be quite confusing to determine which system is engaged and controlling the aircraft at any particular time.

Reliance on MCP Annunciations

Without appropriate training, there can be a reliance on the various annunciations and lights displayed on the Mode Control Panel (MCP).  While some annunciations are straightforward and only illuminate when a function is on or off (such as the CMD button), others can be confusing, for example VNAV.

Do not reply on the MCP.  Always refer to the FMA to see what mode is controlling the aircraft.

Flight Mode Annunciator (FMA)

All Boeing aircraft are fitted with an FMA of some type and style.  The FMA on the Next Generation is located on the Captain and First Officer side Primary Flight Display, and is continuously displayed.  The FMA indicates what system is controlling the aircraft and what mode is operational.  All flight crews should observe the FMA to determine operational status of the aircraft and not rely on the annunciators on the MCP that may, or may not indicate a selected function.

The FMA is divided into three columns and two rows. The left column relates to the Autothrottle while the center and right hand column display roll and pitch modes respectively.  The two rows provide space for armed and selected annunciations to be displayed.  Selected modes that are operational are always coloured green while armed modes are coloured white. 

Below the two rows are the Autopilot Status alerts which are in larger green-coloured font, and the Control Wheel Steering (CWS) displays which are coloured yellow.  The Autopilot Status alerts are dependent upon whether a particular system has been installed into that aircraft.  For example, Integrated Approach Navigation (IAN), and various autoland capabilities.

When a change to a mode occurs (either by by a flight crew or by the Automatic Flight System), a mode change highlight symbol (green-coloured rectangle) is displayed around the changed mode annunciation.  The rectangle will be displayed for 10 seconds following the change in mode.

Unfortunately, not all avionics suites have the correct timing (10 seconds) and some displays the rectangle for only 2 seconds.  According to the Boeing manual the default time should be 10 seconds.

figure 1: common mode annunciations that the FMA can display.  FMA annunciations may differ between airframes depending upon the software installed to the aircraft (and avionics suite used in your simulation).  G, W and Y indicates the colour of the annunciation (green, white, or yellow). the pitch mode FOR column and CWS display are not populated. 

ERRATUM: ILS, SINGLE CH and IDLE HAVE NOT BEEN INCLUDED WHEN THEY SHOULD HAVE

Important Points:

  • An annunciation that is green-coloured indicates a selected mode.

  • An annunciation that is white-coloured indicates an armed mode.

  • If there is some confusion to what mode is currently flying the aircraft, the FMA should be what you look at - not the MCP.

Video

Boeing 737 ILS CAT IIIa Autoland PFD demonstrating FMA.