Searching for Definitive Answers - Flight Training

First Officer conducts pre-flight check list & compares notes.  Whilst check lists are essential in ensuring that all crews operate similarly, there is considerable variance in how flight crews actually fly the 737

Learning to fly the 737 is not a matter of 1, 2, 3 and away you fly; there’s a lot of technical information that requires mastering for successful and correct flight technique.  Searching for a definitive answer to a flight-related question can become frustrating.  Whilst respondents are helpful and want to impart their knowledge, I’ve learnt through experience that often there isn’t a definitive answer to how or why something is done a certain way.  

Typical Pilot-type Personalities

Typical pilot personalities nearly always gravitate towards one answer and one correct method; black or white, right or wrong – virtual pilots or “simmers” behave in a similar fashion.  They want to know with certainty that what they are doing replicates the correct method used in the real-world. 

In reality, the Boeing 737 is flown by different crews in different ways all over the globe every minute of the day.   Often the methods used are not at the discretion of the crew flying, but are decided by airline company policy and procedures, although the ultimate decision rests with the Captain of the aircraft.  

For example, climb out procedures vary between different airlines and flight crews.  Some crews verify a valid roll mode at 500’ (LNAV, HDG SEL, etc) then at 1000’ AGL lower pitch attitude to begin accelerating and flap retraction followed by automation.  Others fly to 1500' or 3000’ AGL, then lower pitch and begin to "clean up" the aircraft; others fly manually to 10,000’ AGL before engaging CMD A. 

Another example is flying an approach.  Qantas request crews to disengage automation at 2500’ AGL and many Qantas crews fly the approach without automation from transition altitude (10,000’ AGL).  This is in contrast to many European and Asian carriers which request crews to use full automation whenever possible.  In contrast, American carriers appear to have more latitude in choosing whether to use automation.

Considerable Variance Allowed

The below quote is from a Qantas pilot.

  • There is considerable tolerance to how something is done, to how the aircraft is flown, and what level of automation , if any, is used. Certainly whatever method is chosen, it must be safe and fall within the regulatory framework. There are are certainly wrong ways to do things; but, there is often no single right way to do something.

Therefore; when your hunting for a definite answer to a question, remember there are often several ways to do the same thing, and often the method chosen is not at the crew’s discretion but that of the airline.

B737 Training - Videos by Angle of Attack (AoA) - Basic Review

 “In the later part of the evening and occasionally into the wee hours of the morning, a hearty group of individuals - most of them seemingly rational, grown men and women with professional daytime jobs - sit perched in front of computer monitors with sweaty palms tightly clenching flight yokes.  Distant cries of "Honey, come to bed" have long since fallen on deaf ears as, with razor-sharp concentration, these virtual airmen skilfully guide their chosen aircraft down glide paths to airports across the world.  The late night silence is shattered by screeches of virtual rubber on the runway immediately followed by the deafening whine of reverse engine thrusters and finally a sign of relief from the flight deck - also known, in many instances as a desk! “

Why do we enjoy flight simulator?  

Is it the technical challenge learning integrated computer generated management systems, or the enjoyment of landing a virtual jetliner on a runway in limited visibility and a crosswind.  Perhaps it’s the perception of travelling to far flung locations that you probably would never visit, or maybe it’s the enjoyment received from constructing something from nothing (a flight deck).  

Which Aircraft Today - Basic Airmanship

There are many people very happy messing about with whatever they are flying.  Some will be using home computers and a joystick, others small generic style flight decks – all will have, to some degree, a level of airmanship. 

Whatever level, every individual will require at some point instruction in “how to fly” and "how to use the various avionics and instrumentation" - more so in B737 than a Cessna 172.

Flight Training –Remove Automation

A high-end simulator is a substantial investment both in time and funds.  Therefore, to obtain the best “Bang for Buck” as the Americans say, it’s more satisfying to accomplish a flight the correct way rather than the wrong way.  The B737 has numerous interfacing flight management systems and it’s important to understand what these systems do and how they interact with each other in certain phases of flight.

Flying the B737 in auto pilot mode is not difficult; the Flight Management System (FMS) does most of calculations and work for you and if you use autoland - well what else is there to do but watch.  But flying this way can be counterintuitive as you don’t really have full control of the aircraft; to fully appreciate the aircraft for what it is, you must deactivate the auto pilot and other automation and fly “hands on”.

Once the automation is deactivated, task levels multiply as several layers of information present themselves; information that must be assimilated quickly to enable correct decisions to made.  There's little room for second guessing and you must have a good working knowledge of how the various flight controls and systems interact with each other.  Add to this, inclement "virtual" weather, limited visibility, navigational challenges, landing approaches, charts, STARS, NDBS, VORS and a crosswind, and you'll find you have a lot to do in a relatively short space of time; if you want to land your virtual airliner in one piece.  And, this is not mentioning your pet dog nuzzling your leg wanting immediate attention or your girlfriend querying why the dirty dinner dishes haven't be washed!!

books contain a lot of information, however, they rely on the reader already having a good understanding of the 737 systems

Technical Publications

A lot of information is readily obtainable from technical publications, on-line sources, and from the content of forums.  There are several excellent texts available that go into depth regarding the technical aspects of the B737 and cover off on a lot of the topics a real and virtual pilot may need to know (I will be looking at a few of them in future posts).  But, for the most part these texts are technical in nature and are do not include the "how to" of flight training.

One very good source of information is the B737 Flight Crew Operations Manual (FCOM).

Tutorials - PMDG

Two “how to” tutorials written by Tom Metzinger and Fred Clausen are in circulation.  These tutorials deal with the Precision Manuals Development Group (PMDG) B737 NG. These tutorials provide an excellent basis to learning how to fly the B737 and what you need to do during certain phases of flight.  Two further tutorials are available for the 737 NGX, however, they are not freely obtainable unless you have purchased the PMDG B737 NG or NGX software package.

That Nagging Feeling……Correct or incorrect ?

Despite the books, tutorials and manuals, there's always that nagging feeling that something has not been covered, is incorrect, or has been misunderstood.  We all have heard the saying “there are several ways to skin a cat”; flying is no different.  A B737 line instructor informed me that there is "a huge amount of technique allowed when flying the B737""There are certainly wrong ways to do things; but, there is often no single right way to do something".  Often the method selected is not at the discretion of the pilot flying, but more the decision of airline management, company policies and ATC.

Visit any FS forum and you will quickly realize that many virtual flyers do things differently.  So where does this leave the individual who wants to learn the correct way?

Short of enrolling into a real flight class, which is time consuming, very expensive and a little “over the top” for a hobby, the next option is to investigate various on-line training schools.  To my knowledge, there aren’t many formal style training classes available that provide training in the B737.  

Angle of Attack Flight Training (AoA)

Angle of Attack has developed a reasonably priced and thorough training program that incorporates ground, line and flight training for a number of differing aircraft types.   Only recently has AoA completed their B737 ground and flight training video presentations, in what amounts to many hours of valuable training.

Much of the training material is presented in video format which can either be downloaded to your computer, mobile device or viewed on-line. The content of the videos is very high resolution, well structured, professionally narrated, easy to follow, and most importantly – interesting and informative.  

HD Video, Tutorials, Flows & Checklists for all B737 Systems

AoA have followed the real-world aviation industry standard by providing a lot of system training using "flows".  A flow is a animated diagram showing step by step the correct method of doing something.  In many instances a .pdf document can be downloaded to provide a "memory jogger" for you to replicate the flow when in the simulator.

Many of the training videos build upon knowledge already gained from texts such as the Flight Crew Operations Manual (FCOM), and the use of video as opposed to only reading, provides a differing method of education which helps you to develop a greater understanding.

Video flight tutorials which take you through from pushback to shutdown and demonstrate the correct procedure for conducting a flight.

AoA only provides training for the B737 NGX, however, much of the material is backwards compatible with the B737 NG series airframes.  The video training utilises the 737 NGX model produced by Precision Manuals Development Group (PMDG) and does not use a real aircraft.

Despite these two shortcomings (NGX & not a real aircraft), the training offered is exceptional, one of a kind, and in my opinion reasonably priced.  

Ground Effect - Historical Perspective & Technical Explanation

usaaf b17 flying fortress (USAAF, B17-F-45-VE (cropped), marked as public domain, more details on Wikimedia Commons)

During the Second World War, a crippled Boeing B17 was struggling to maintain altitude.  The aircraft and eleven crew members were over occupied Europe, returning to England, following a successful bombing mission.

Searchlights, Flak & Enemy Fighters

After negotiating the enemy searchlights that probed the darkness over their target, and then being struck by shell fragments from anti-aircraft flak, they were pounced upon by German fighters on their homeward leg.  The ensuring fight was dramatic and left the damaged bomber with only two engines running and third engine having difficulty.  As the bomber approached France, the enemy fighters, starved of fuel, aborted their repetitive attacks, but the damage had been done.  Loosing airspeed and altitude the aircraft could not maintain contact with the Bomb Group; soon they were alone.

The captain, in an attempt to maintain altitude, requested that everything heavy be jettisoned from the aircraft.  This included machine guns, ammunition and damaged radio equipment; soon the B17 was a flying skeleton if its former self.

The Captain was concerned that a fire may develop in engine number three as it was spluttering due to a fuel problem.  The Captain did not need to concern himself much longer, for the engine began to cough uncontrollably before vibrating and ceasing to function.   The aircraft was now only flying on one engine – something not recommended, as it placed great strain on the engine and aircraft superstructure.  

The aircraft continued to loose altitude despite the jettisoning of unwanted equipment.  The Captain decided it was better to ditch into the English Channel rather than land in occupied France.  His thinking was that Air Sea Rescue maybe able to pick them up, if their repeated morse code (SOS) had been received by England.  The power of one engine was nowhere enough to maintain such a large and heavy aircraft and the crew prepared to ditch into the freezing cold water of the channel.

We’re Going In – Good Luck Boys!

“Get ready guys, we’re 300 feet above the water” yelled the Captain into his intercom system.  “As soon as we hit bust them bubbles and get out.  Try to get a raft afloat”.  “Link up in the water  – Good Luck!”

Everyone expected the worse.  Surviving a ditching was one thing, but surviving in the cold water of the English Channel in winter was another!  The rear gunner, since moving forward sat close to escape hatch and gingerly rubbed his rabbit’s foot; he had carried this on every mission.  The side gunner fumbled repeatedly with his “lucky” rubber band, the bombardier sat in private thoughts, a photograph of his loved one held tightly in his hand, and the navigator frantically punched his morse set trying to get the last message out before fate took command of the situation.

The aircraft, although trimmed correctly, slowly began to dip towards the sea.  But at 60 odd feet above the waves, the aircraft began to float  – it felt as if the aircraft was gliding on a thermal.  For some reason the aircraft didn't wish to descend.  The remaining engine screamed its protest at being run at full throttle, however the horizontal glide continued. 

The Captain was amazed and thankful for whatever was keeping this large aircraft from crashing into the sea.  It was as if the B17 was cruising on a magic carpet of air – why didn’t it crash.  

A tail-wind assisted in pushing the B17 toward England and safety; seeing the English coast in sight, the navigator quickly calculated a route to the nearest airfield closest to the coast.  Twenty minutes later the bomber lumbered over the runway.  The only way to land was to reduce power to the remaining engine and push the control wheel forward, thereby lowering the pitch angle.  They were home and safe!

Divine Interaction, Luck, or Skill ?

The crew thought it was divine interaction that the bomber had not crashed – or perhaps luck!

Aviation engineers were baffled to what had occurred.  The aircraft had glided many miles above the surface of the English Channel and had not crashed.  Boeing, in an attempt to unravel what had occurred, repeated the event in the confines of a wind tunnel, to realize that what had maintained the large aircraft airborne was not divine interaction, but the interaction of what has since been termed Ground Effect.

The above account, although embellished in detail, did occur.  The mishaps of this bomber during the Second World War demonstrated a previously unknown phenomenon - Ground Effect.

Ground Effect – Technical Explanation

Ground effect refers to the increased lift and decreased drag that an aircraft wing generates when an aircraft is about one wing-span's length or less over the ground (or surface).  The effect of ground effect is likened to floating above the ground - especially when landing.

When an aircraft is flying at an altitude that is approximately at, or below the same length of the aircraft's wingspan, there is, depending on airfoil and aircraft design, a noticeable ground effect. This is caused primarily by the ground interrupting the wingtip vortices, and the down wash behind the wing. 

diagram 1: ground effect in the air

When a wing is flown very close to the ground, wingtip vortices are unable to form effectively due to the obstruction of the ground. The result is lower induced drag, which increases the speed and lift of the aircraft.

The two diagrams depict aircraft in ground effect whilst on the ground and in the air.

diagram 2: ground effect on the ground

A wing generates lift, in part, due to the difference in air pressure gradients between the upper and lower wing surfaces. During normal flight, the upper wing surface experiences reduced static air pressure and the lower surface comparatively higher static air pressure. These air pressure differences also accelerate the mass of air downwards.  Flying close to a surface increases air pressure on the lower wing surface, known as the ram or cushion effect, and thereby improves the aircraft lift-to-drag ratio.  As the wing gets lower to the surface (the ground), the ground effect becomes more pronounced.

While in the ground effect, the wing will require a lower angle of attack to produce the same amount of lift. If the angle of attack and velocity remain constant, an increase in the lift coefficient will result, which accounts for the floating effect. Ground effect will also alter thrust versus velocity, in that reducing induced drag will require less thrust to maintain the same velocity.

The best way to describe ground effect and which many people, both pilots and passengers, have encountered is the floating effect during the landing flare.

Low winged aircraft are more affected by ground effect than high wing aircraft. Due to the change in up-wash, down-wash, and wingtip vortices there may be errors in the airspeed system while in ground effect due to changes in the local pressure at the static source.

Another important issue regarding ground effect is that the makeup of the surface directly affects the intensity; this is to say that a concrete or other hard surface will produce more interference than a grass or water surface.

Problems Associated With Ground Effect

Take Off

Ground effect should be taken into account when a take-off from a short runway is planned, the aircraft is loaded to maximum weight, or the ambient temperature is high (hot).

Although ground effect may allow the airplane to become airborne at a speed that is below the recommended take-off speed, climb performance will be less than optimal.  Ground effect may allow an overloaded aircraft to fly at shorter take off distances and at lower engine thrust than normal.  However, the aircraft will not have the ability to climb out of ground effect and eventually will cease to fly, or hit something after the runway length is exceeded.

Approach and Landing

As the airplane descends on approach and enters ground effect, the pilot experiences a floating sensation which is a result from the increased lift and decreased induced drag value. Less drag also means a lack of deceleration and could become a problem on short runways were roll-out distance is limited.

Therefore, it's important that power is throttled back as soon as the airplane is flared over the threshold and the weight of the airplane is transferred from the wings to the wheels as soon as possible.

How to Counter Ground Effect

To minimise ground effect on landing, the following must be addressed:

  • Pitch angle should be reduced to maintain a shallow decent (reduces ability of the wing to produce more lift).

  • Thrust should be decreased.

  • The power should be throttled back as you cross the threshold at ~RA 50 feet (note that in simulation ~10-15 feet is more effective).

  • Land the aircraft onto the runway with purpose and determination.  Do not try and grease the aircraft to the runway (often called a carpet landing).  The weight of the aircraft must be transferred to the wheels as soon as possible to aid in tyre adhesion to the runway (also important when landing in wet conditions).

Does Ground Effect Occur in Flight Simulator?

If the aircraft is not set-up correctly, ground effect will definitely be experienced in a flight simulator. 

If you have ever wondered why, after reducing speed on an otherwise perfect approach, your aircraft appears to be floating down the runway, then you have already experienced ground effect.

Creating Waypoints on the Fly with the CDU

Often you need to inject into the flight plan a Place Bearing Waypoint or an Along Track Waypoint.  There are several ways to do this with each method being similar, but used in differing circumstances.  Depending upon the FMC software in use, either the LEGS or the FIX page is used.

A Place Bearing Waypoint (PBW) is a waypoint along a defined bearing (radial) that is created at a specified distance from a known waypoint or navigation aid (navaid).  A PBW is used to create  a waypoint that is not in the active route.

An Along Track Waypoint (ATW) is a waypoint inserted into a route that falls either before or after a known waypoint or navaid.

Although the PBW and ATW are similar, they are used in differing circumstances.

  • In the following examples I will use the waypoint TETRA as an example.  TETRA is a waypoint near Narita, Japan (RJAA).

Creating a Place Bearing Waypoint

  • Type into the scratchpad the waypoint name, bearing and distance.

    For example, type into the scratchpad a TETRA340/10.  TETRA is the waypoint that we want to create the new waypoint from.  This is called an anchor waypoint.  340 is the bearing in degrees from the anchor waypoint that the new waypoint will be generated.  10 is the distance in nautical miles from the anchor waypoint that the waypoint will be generated at.

  • Up-select TETRA340/10 to the LEGS page. 

  • Press EXECUTE.

To insert the waypoint before the anchor waypoint use the negative key (TETRA340/-10).  Do not use the negative symbol if you want to insert the waypoint after the anchor waypoint (TETRA340/10).  Take note that the slash (/) is after the bearing and the waypoint name and vector are joined with no spaces.

Creating an Along Track Waypoint

  1. Type into the scratchpad the waypoint or navaid that will be used as an anchor waypoint.

  2. Up-select this into the correct line of the route in the LEGS page.

  3. Press EXECUTE.

Important Points:

  • If the waypoint is already part of the route, it is not necessary to type the identifier in to the scratchpad.  Rather, press the appropriate Line Select Key adjacent to the identifier (in the LEGS page) to down select to the scratchpad.  Then add the /-10 or /20 after the identifier and up-select.  Using this method eliminates the possibility of typing the incorrect identifier into the scratchpad.

  • The FMC software will generate subsequent waypoints with a generic name and numerical sequence identifier.  For example, TETRA, TETRA01, TETRA02, TETRA03.

Creating a Circle around a Waypoint using the FIX Functionality

The purpose of creating a circle (ring) around a point in space is to increase spatial awareness when looking at the Navigation Display (ND).  A circle at a set distance may be used to define the Missed Approach Altitude (MAA), the distance from the runway threshold that the landing gear should be lowered, or to designate an important waypoint.

I nearly always use two or three circles depending upon the approach being executed.  One circle will be at 12 miles while the second circle will be at 7 miles.  The use of circles can be very helpful when flying a circle-to-land approach; one circle will define the MAA and the other circle will define the  'protected area' surrounding an airport.

To create a circle (ring) around a known point

  1. Press FIX on the CDU to open the FIX page.

  2. Type into the scratchpad, the name of the waypoint or navigation aid (VOR, NDB, etc).  For example TETRA.

  3. Up-select this to the FIX page (LSK1L).

This will display a small circle around the identifier in the Navigation Display in green-dashed lines.

If you want the circle to be at a specific distance from the point in question.

  1. Type into the scratchpad the distance you require the circle to be drawn around the waypoint.  For example /5.

  2. Up-select this to the FIX page (LSL2L).

To add additional circles around the selected point, repeat the process using different distances and up-select to the next line in the FIX page.

Important Point:

  • A quick way to insert a waypoint from a route into the FIX page is to press the waypoint name in the LEGS page.  This will down select the waypoint to the scratchpad saving you the time typing the name and removing the possibility of typing the incorrect letters.  Up-select to the FIX page.

Creating a Single Along Track Waypoint (at the edge of the circle)

One or more waypoints can be created anywhere along the circumference of the circle (discussed earlier) by inserting a bearing and distance into the FMC page.  

To create a waypoint at the edge of the circle

Create a circle around a point as discussed earlier (TETRA).

  1. Type in the scratchpad the bearing and distance that you wish the new waypoint to be created (for example 145/5).

  2. Up-select this information to the FIX page (LSK2L). This will place a green-coloured line on the 145 degree radial from the waypoint (TETRA) that intersects a circle at 5 miles on the ND.

  3. Next, select the 145/5 entry from the FIX page (press LSK2L).  This will copy the information to the scratchpad.  Note the custom-generated name – TETRA145/5.

  4. Open the LEGS page and up-select the copied information to the route.  Note that TETRA145/5 will now have an amended name – TET01.

  5. Copy TET01 to the scratchpad.

  6. Open a new FIX page (there are 6 FIX pages that can be used).  Up-select TET01 to the FIX page (LKL1L).  This will create a small circle around TET01 on the ND.

  7. To remove the waypoint (TET01) from the route (if desired), open the LEGS page and delete the entry.   If desired, the waypoint can easily be added again to the route from the FIX page.

The above appears very convoluted, however once practiced a few times it becomes straightforward.  There is a less convoluted way to do this, however, the method is not supported by ProSim737.

Inserting an Additional Along Track Waypoint around the Arc of the Circle (DME Arc)

A DME arc is a series of Along Track Waypoints that have been created along an arc at a set distance from the runway (waypoint or navigation fix).  This is often used when flying a NDB Approach.

Usually, the arc begins on the same bearing as the navigation track of the aircraft, and ends a set point, usually at the turn from base to final.  Subsequent bearings after the initial bearing are at a 30 degree spacing.

To create a DME Arc

First, ensure you have a circle created around the waypoint (TETRA) at the distance required (FIX page).

  1. Select the anchor waypoint (TETRA) for the arc from the LEGS page and down select it to the scratchpad.

  2. Type into scratchpad after TETRA (as separate entries) the bearing and distance.  For example: TETRA200/5, TETRA230/5, TETRA260/5, TETRA290/5 TETRA320/5 and so forth.  Note the bearings differ by 30 degrees.  This creates the arc.

  3. Up-select each of the above entries to the route in the LEGS page (after the anchor waypoint TETRA).

This will create an arc 5 miles from TETRA.

If you want the first waypoint to be along your navigation track, use the bearing for this initial waypoint as indicated in the LEGS page of the CDU.

The FIX page can also be used to create an arc using the same technique.  Using the FIX page will enable the arc to be seen on the ND, but not form part of the route.

Important Point:

  • It is important to note that user and along track waypoints are given a generic name and numerical sequence identifier by the FMC software (TETRA01, TETRA02. TETRA03, etc).

Understanding the CDU

What I have described above is but a very brief and basic overview of some functions that are easily performed by the CDU.

CDU operation can appear to be a complicated and convoluted procedure to the uninitiated.  However, with a little trail and error you will soon discover a multitude of uses.  It is important to remember, that there are often several ways to achieve the same outcome, and available procedures depend on which FMC software is in use.

I am not a professional writer, and documenting CDU procedures that is easily understood is challenging.  If this information interests you, I strongly recommend you purchase the FMC Guide written by Bill Bulfer.  Failing this, navigate to the video section of this website to view FMC tutorials.

 

Navigation display showing map view. Left to right.

image 1:  5 mile ring surrounding TETRA.

image 2: 2 and 5 mile ring surrounding TETRA.

image 3: 5 mile ring surrounding TETRA showing PBW on circumference TET01.

image 4: DME arc along circumference of 5 mile ring surrounding TETRA.

 

Acronyms

Anchor Waypoint – The waypoint from which additional waypoints are created from.

Bearing – Vector or radial.

CDU – Control Display Unit.

FMC – Flight Management Computer.

ND – Navigation Display.

Target Waypoint – The waypoint that has been generated as a sibling of the Anchor waypoint.

Waypoint – Navigation fix, usually an airport, VOR, NDB or similar.

  •  Updated 05 June 2022.

737-800 Primary Flight Display (PFD) Diagram

pfd diagram (smart cockpit)

The simple to understand picture is an excellent visual reminder to the most important areas of the Primary Flight Display (PFD) in the 737-800.

When I was new to jets, I had this image printed in colour above the computer screen as a quick reference guide. It doesn't take long before it’s second nature and you no longer need to reference the diagram.

I will let you fill in the appropriate text beside the numbers.

Vertical Bearing Indicator (VBI) - How To Calculate A Controlled Idle Descent

vertical bearing indicator (vbi) displayed on reproduction cdu manufactured by flight deck solutions (fds)

Often you are requested by ATC to alter altitude, or must intercept a desired point in space at a certain altitude for operational reasons. There are several methods available to the pilot to initiate the change in altitude; outlined below are three methods.

A: Initiating Level Change or Vertical Speed on the MCP will activate an advancing and contracting green line arc (Altitude Prediction Line) on the CDU.  This green arc identifies the location that the aircraft will reach ,if the vertical speed is maintained, in relation to the active CDU waypoint.

B:  You can calculate the distance and vertical descent using mathematics, but this can be cumbersome and may illicit possible mistakes. 

C:  You can alter the LEGS page of the CDU keying in the new altitude constraints (this assumes you are using VNAV & LNAV.

The CDU Vertical Bearing Indicator (VBI) can help you.  The VBI is basically an angle calculator that provides "live" vertical speed information based upon a desired descent angle.  An example using the waypoint TESSI is provided.

  • Navigate to Descent page by pressing the DES key.

  • At lower right hand side of the DES page you will see the following: FPA, V/B, V/S.  This is the Vertical Bearing Indicator.

  • Key RSK3 (right line select 3) and enter the waypoint and altitude (TESSI/17000)

The VBI provides 3 fields:

  • FPA (Flight Plan Angle) is the vertical path in degrees that the aircraft is currently flying.

  • V/B (Vertical Bearing) is the vertical path in degrees that the aircraft SHOULD be flying to reach the keyed waypoint (TESSI/17000).

  • V/S (Vertical Speed) is the vertical bearing (V/B) converted into vertical speed for easy input into the MCP.

Observe the V/B.  The idle descent in a 737 is roughly 3.0 degrees (PMDG use 2.7 degrees)

Wait until the V/B moves between 2.7 and 3.0 degrees (or whatever descent angle you require)

When the value is reached, dial in the required altitude and indicated Vertical Speed on the MCP

The Altitude Prediction Line will now intersect the selected waypoint (TESSI) and the aircraft should fly a perfect idle descent to TESSI.  Note that the original altitude selected for the pinpoint in the LEGS page does not reflect the new change.

Benefits

One of the advantages in using the Vertical Descent Indicator is that the pilot can instigate an accurate controlled idle descent, following a desired glide path to the desired waypoint.  This advantage can be used in a number of scenarios:

  1. Descent from cruise altitude.

  2. Approaching the runway from a straight-in approach course.

  3. Approach the runway from base or via an ARC approach.

  4. Approaching the runway for a downwind approach.

I often use the VBI from FL10 to FAF on approach, when other constraints are not required.

Video

I’ve made a short video showing the procedure. 

In the video, TESSI has been selected from the LEGS page and downloaded to the scratchpad.  Pressing DES opens the required page where the VBI resides.  In the scratchpad, the altitude constraint is entered for the waypoint – TESSI/17000 and uploaded to the WPT / ALT section of the Vertical Bearing Indicator (right line select 3). 

If you watch the indicator you will see the V/B and V/S changing as the aircraft approaches TESSI. 

Select the new altitude and vertical speed on the MCP (17000 & 780 - or nearest numeral) and you will note the FPA begins to change, indicating the new vertical path of the aircraft.  The Navigation Display (ND) will then show the Altitude Projection Line moving towards and stopping at TESSI.  The aircraft will now descend at the nominated angle of descent until reaching TESSI.  Note that the original altitude in the LEGS page does not reflect the new change.

 
 

Flight Path Vector (FPV) - Explanation and Use

FPV button located on the Electronic Flight Instrument System (EFIS) unit on the Captain and First Officer side.  EFIS unit produced by CP Flight (Pro model)

I often get asked what the FPV button does on the EFIS unit.  Pressing the button doesn’t do anything grand or remotely obvious, unless you are observant and note that an oddly shaped circle with lines has instantly appeared on the Primary Flight Display (PFD).

What is the Flight Path Vector and What Does it Do - The Basics

The FPV is a small circular symbol which, when the FPV button on the EFIS is depressed, superimposes over the Attitude Indicator (AI) part of the Primary Flight Display (PFD). The circular symbol represents the aircraft's axis in relation to the vertical and lateral movement referenced to the Earth's surface.  If you were stationary on the ground, the circle would be on the horizon line and centered in the display.

The data received by the FPV is derived mostly from the Internal Reference System (IRS) of the aircraft; therefore, the Flight Path Vector provides an almost instantaneous display of flight path angle and drift information.

For example, if an aircraft took off in a 15 Knot crosswind the Flight Director (FD) bar would register the pitch of the aircraft while the circular FPV would be located above the horizon and to the right or left.  The lateral deviation of the FPV provides a visual indication of drift caused by the crosswind, while the vertical deviation shows the aircraft's attitude or pitch.

Flight Path Vector (FPV) in ProSim737 avionics suite.  The FPV symbol is in small circle with three lines. It reads roughly 2.5 - 3 degrees nose up.  The aircraft is in TO/GA command mode ascending at 1100 feet per minute to flaps up speed.  There is no crosswind so the symbol does not show a deviation (drift) from center

When the aircraft changes from climb phase to level flight, the FD bar is commensurate with the configuration of the aircraft (speed, weight, flap, etc.) and the FPV would be on the horizon line, indicating level flight.

Descending in approach phase on a 3 degree glidepath, the position of the FD and Horizon Heading Scale (aircraft symbol bar/pitch bar) is  dependent upon the speed, flap and gear extension, but the position of the FPV will stay at 3 degrees, unless the flight controls are used to alter the aircraft's pitch. 

The FPV will provide greater accuracy than the Horizon Heading Scale as it does not 'lag' behind real time as other instruments can do; therefore, it is sensible for flight crews to include this tool in their routine scan.

Boeing provides a caveat in their literature, stating that the FPV is not a primary flight instrument.  Therefore, information displayed by the FPV should be used to augment data from the primary instrumentation.

Flight Path Vector (FPV) Advantages

The Flight Path vector is a very helpful tool:

  • It enables you, at a glance, to assess the performance of the aircraft. If the FPV is in the blue part of the Primary Flight Display, you are definitely ascending. Vice-versa when you are in the brown.

  • If you are unlucky enough to have a windshear encounter, the first instrument to warn you other than the  aural warning will be the FPV as it assumes an unusual position (drops away or rushes up). The other instruments (altitude, vertical speed and airspeed) have significant lag before they accurately show the true picture of what is occurring, but the FPV provides an almost immediate indication (live-time). 

  • It is an ideal tool to use during non-precision approaches as it provides the flight crew with additional situational awareness, especially during night operations.

  • The FPV is an ideal tool to gauge the accuracy with which the aircraft is flying a glideslope and can be used to cross check against other information.

  • The FPV is an ideal tool to monitor non-automation phases of the flight (manual flying) as the flight crew need only to keep the FPV on the horizon to maintain level flight.

  • The FPV registers the smallest trend almost immediately, while the flight director (FD) will only correct an issue after a deviation has occurred. 

  • The FPV can be used to provide additional information during crosswind landings. If you look at the FPV as part of your usual instrument scan, the FPV will provide visual display to whether you are correctly aligned with the center line of the runway (the FPV will display the drift).

The last point requires expanding upon, as the FPV can be used to determine the correct rudder deviation to use when using the side slip method for a crosswind approach and landing. A crosswind will push the FPV circle in the direction that the wind is blowing TO. Rudder inputs will cause the FPV symbol to move towards the the center of the Altitude Indicator.  Once the the FPV is centered in the Altitude Indicator, the aircraft is aligned correctly (no drift).

The Flight Path Vector is a small unobtrusive icon located on the PFD that pays large dividends when used correctly.  Not only can this device warn you of impeding problems but it can be used to facilitate greater flight accuracy in a number of conditions including approach, straight and level flight, and crosswind landings.

 

Diagram 1: Schematic of the Flight Path Vector showing how it relates to aircraft axis, angle and drift (copyright felix M)

 

Wings & Arcade Games

qantas embroided pilot wings

Real-world pilots, whether military or civilian based, earn their wings.  Wings are a symbol of the time, study, work and effort that an individual has gone through to receive their pilot rating.  

In the military, receiving your wings represents more than just training.  For many, it’s the inclusion of being part of group of similar-minded individuals and allegiance to a particular squadron or unit with its inherent history. 

For example pilots joining 19 Squadron in the Royal Airforce become part of the history of the squadron which began operations during the First World War and included during the Second World War, pilots who flew in the Battle of Britain.  QANTAS pilots become part of the history of the airline, which began in the Northern Territory and is one of the oldest airlines still flying today with its original name. 

So where am I going with this?  Most of us are NOT real-world pilots, although many “simmers” may have a flying rating of some type.  To fly (correctly) a fully functional simulator still requires in-depth knowledge, time, study and effort on behalf of the person building and flying the simulator.  All too often, the task of learning to fly the “right way” is lost with Flight Simulator. 

Many people enjoy using slight simulator; jumping into whatever aircraft they choose and flying over terrain that otherwise they may not have the opportunity to view.  There is nothing wrong with this.  But, to truly engage flight simulator and see what it can offer, you have to stop and step back from the actual playing, and enter a world similar to that of a real-world pilot: study, work, effort, and an expenditure of time to learn the basics of airmanship and grasp the technical aspects of flying whatever aircraft you have chosen to simulate.  Learning the theory, at least initially, far outweighs the actual time spent flying in the simulator.

In some respects, simulation flying is more frustrating than real flying, as finding the appropriate study material is not easy.  There is only a limit to what books can teach you, especially when you are learning a high end aircraft such as the Boeing 737.  At some stage, you will need the guidance of a real-world pilot to instruct you in the correct method to apply the techniques learned.  

So, the next time someone suggests to you that you are just playing an arcade game, remind them of the time, study, work and effort that you’ve expended to be at whatever skill level you’re currently at. 

Wings, no matter if they are real or virtual, are earned (if only in the time spent reading) and are not given away!