Separating Audio To Different Speakers - Sim Avionics & ProSim 737

When I did my PPL some years ago, I had purchased a David Clark headset for use during my flight training.  The headset was a wonderful aid to hear ATC and my instructor whilst filtering out the engine noise and other ambient sounds found in a small cockpit of a Cessna 182.

Although it’s not common place to use a pair of David Clark headsets in a B737 (unless a military version), I decided to use the headset to filter out engine noise, ambient noise, and to hear ATC and ATIS announcements a little more clearly.

Using a real headset

Using a real headset with FSX isn’t that complicated if you’re satisfied with the way flight simulator separates audio.  It only becomes complicated when you want to attempt to replicate exactly what occurs in real flight deck. 

In a real flight deck, all communication and navigation sounds (ADF, DME, markers, etc) can be heard through the headset and /or flight deck speaker.  Unfortunately, in FSX the opposite occurs, with navigational sounds being heard through the main speakers only.   FSX only separates ATC and ATIS (voice).

So how do we separate audio to hear various sounds through different speakers and the headset.

Separating Audio – Choose Your Poison

There are several methods to achieve audio separation; some methods are easier than others.

You can either utilize what is already available on your computer through FSX.  This is the easier and simplest method and works well with my policy of KISS (keep it simple stupid). 

If you’re feeling more energetic, and wish to separate sounds to several strategically placed speakers, then a second sound card is probably your only option. With two sound cards on your computer, you can now select which sounds play through which sound card. 

If you’re loath to install a second card to the innards of your computer box; then, explore one of the several add on sound cards that can connect to your computer via USB – some cards offer 5:1 surround sound while others offer just a basic sound card interface.

Another method (which I have chosen to follow) is to duplicate sound programs and run them on separate networked computers.  High-end flight avionics software such as produced by Project Magenta, Sim Avionics and ProSim737 support this.

The Easy Way with FSX

FSX supports the separation of basic audio.  It’s as easy as opening the sound menu in FSX and selecting which sound is played on which device - speakers or headset.  Engine sounds will be diverted to the surround speakers and ATC and ATIS will be diverted to the headset.  This works very well, however, only ATC and ATIS voice is diverted to the headset.  Navigation sounds, call outs, etc are not heard through the headset.  To divert these sounds requires a little thinking outside of the box.

I’ve attempted to explain basic audio segregation using two popular flight avionics suites: Sim Avionics and ProSim737.

Using Sim Avionics – Basic Operation

One of the upsides of using Sim Avionics or ProSim 737 is that it allows you to simultaneously operate different facets of the flight deck from multiple computers.  In my set-up I am running two computers – one with FSX installed (called the server PC) and one with Sim Avionics installed (called the client PC).  Both computers have speakers attached. 

To install audio on both computers you will need to copy the sound.exe file and audio folder found in your Sim Avionics main directory to the server PC (computer that has FSX is installed).  You will also need to copy the Client_TCP.exe file as this file allows Sim Avionics to communicate between networked computers.  Once copied to the server PC, click the executable sound.exe file after you have opened FSX.   Sounds will now be heard through speakers on both the client and server PC.

Using Sim Avionics – Separating & Customizing Sound

This is comparatively easy and involves selecting the sounds you do not want to hear and either removing them from the audio folder or renaming them.  In the audio folder on the server PC, I have removed most of the sounds  and have left in the folder the sounds that I wish to hear only through the headset (navigation aids, TCAS warnings, GWPS warnings & call outs – V1, V2, VR, etc).  Therefore, the sound program on the server computer only has those sounds I want to hear through the headset.

On the client PC, to avoid duplication , I have removed the above mentioned sounds from the audio folder.  It’s important to edit/remove the sounds from the audio folder that you do not want to hear.  Failure to do this will result in duplication of sound.  In other words you will hear V1, V2, Vr, etc through your headset and through the main speakers being run from the client computer.

Therefore, what you now have running is:

Server PC – engine sounds being heard through the surround speakers, ATC and ATIS being heard through the headset (via FSX sound separation), and customized sound (navigation, call outs, etc) being heard through the headset (via separately installed Sim Avionics sound program).

Client PC – all other non general sounds being heard through the attached speakers (via separately installed Sim Avionics sound program).

Adding Customized Sound

Adding customized sound can often is challenging.  Add the sound file (.wav format) to the audio folder.  Then search and find the sound .cfg file.  Edit the .cfg file to reflect the added sound and when/how you want the sound to be played. 

The easiest method is to duplicate the section relating to sound from an already operating sound.  Then edit to reflect the new sound.  This way you do not run the chance of making a syntax or topographically error.

I explained how to edit a sound file in my earlier Journal post: Are the Engines Running – 738 Sound.

Using ProSim 737 – Basic Operation

The methodology of manipulating sound in ProSim737 is similar to Sim Avionics. 

You copy the ProSim sound program from the server PC to the client PC so each program can send customized sound to separate speakers on each computer.  To select which sound you want to hear, open each sound program and select/deselect the appropriate sound from the list.

Adding Customized Sound

If you are wishing to add additional customized sounds to the sound program, you can do this in the configuration section of the ProSim737 main program. 

First, you need to add the actual sound to the audio folder.  All sounds should be in .wav file format.  The sounds are usually kept on the ProSim737 main folder/Audio folder (but can be linked from any folder if you wish).  After adding the customized sound, to ensure correct operation, you may need to edit the actual sound file.  This file is found in the ProSim 737 main folder/audio.  The file you are looking for is named config.xml.  Unlike other software, which uses config (.cfg) files, ProSim 737 uses the .xml file format.  To edit this .xml file right click the file with your mouse and choose edit.  Whenever editing anything, always make a back-up first.

Once the new sound file has been added, you need to link the file within the sound program.  To do this, open the file tab in the main Pro Sim 737 program menu and select “add audio”.  Follow the prompts to name and link the .wav file.  Then, you should be able to see and select the sound file from the Pro Sim sound program.  Click the sounds you want to be heard and press “test” to hear your sound.

In ProSim737, as opposed to Sim Avionics, you only enter the sounds once through the main Pro Sim 737 program interface (installed on the server PC).  Any installation of the sound program on client computers has access to this main audio folder. 

Alternate Methods in ProSim737

ProSim737 also provides alternate ways for customizing sound.  This is done through the main ProSim737 main program.

One method involves selecting an internal audio for the added sound in the file/config/audio tab.  This triggers the main program to read the sound automatically.  Another way to join a sound to a specific task is to use what Pro Sim call a gate.  A gate can be used to link the sound to a bespoke sound and generic named action.  This method is very easy if your defined sound output is actually named in the pull down menu list. 

If the added sound is linked to a button press or specific action, then you can link the sound using FSUIPC or via another device such as an I/O card.

ProSim737’s alternate methods of adding and linking sound appear to be quite convoluted and confusing (at least to me).  The ProSim737 manual provides addition information and instructions.

PM Sounds – an easy way to add additional sounds

I have used PM Sounds (PMS) for many years and have enjoyed its simple interface and ability to just work out of the box.  PM Sounds is a small, stand-alone add on released by Project Magenta used to supply customized sound to their fleet of products.  The program is is compatible with many other avionics suites.

The program is stand alone and does not load into the file structure of the simulation platform.  To hear sounds from each computer on your networked set-up requires that PMS be installed on each computer.  PM Sounds comes with a large selection of sounds and you can easily select which sound you require by checking or not checking the box and pushing Q on the keyboard to save the selection.  Activation of the sounds is achieved by running PM Sounds before you start FSX.  The rest just works…

Adding Customized Sound to PM Sounds

To add customized sound to PM Sounds, it’s a matter of finding the audio folder (located under PM Sounds/) and adding the sound (in .wav format).  To hear the sound within PM Sounds, you then must edit the sound.cfg to reflect the sound name, file name and location.

To use PM Sounds on any computer other than the computer running FSX requires you have a copy of Wide FS as PM Sounds uses this program to communicate between the server computer and the clients.

PM Sounds can be used in addition to whatever sound program you are using.  The program can be found on the Project Magenta website.

Important Point To Know (Gauge Commands)

Several sound designers configure their custom sounds to play only when specific actions or commands are triggered - these are called gauge commands.  A sound initiated by a gauge command only works when that gauge is moved by whatever action.  Often it's not possible to use these sounds without some major editing work to the sound.cfg file.  For example, I've been attempting to use the speedbrake sound in ProSim, but as yet have not been able to do so.  This is because the speedbrake is configured to a specific "in house" command or action - in this case the speedbrake. 

You cannot just grab any sound, copy it to the audio folder, and then expect it to play.  There has to be some logic to when the sound is played.  This can be most challenging and frustrating part of manipulating custom sounds.

There You Have It…

Sound can be as easy or as complicated as you want it to me. 

I have attempted to provide, within the last two journal posts, an incite into audio separation using Sim Avionics and ProSim737.  Certainly, the process described above has worked relatively well in my simulation set-up.  Your configuration may differ to what I have, but what will not alter is the basic method of audio segregation.

Are The Engines Running - B738 Sound

One of the main purposes of building a flight deck is to increase the realism and immersion levels when simulating flight.  You want to move real yokes, flick real switches and spin real rotaries whilst maintaining focus on real instruments within a modern glass flight deck. 

Simmers go to exuberant lengths to create the illusion of flight.  Purpose built flight decks, aircraft shells, real aviation equipment and stunning external visuals all add to the immersion effect.  But, what about sound – in particular realistic aircraft engine sounds.

But what about sound……

All of us have had that dejavoo feeling when we have smelt a certain smell or heard a certain noise and are projected back to that event and time.  Vietnam veterans often have vivid flash-backs when they hear news helicopters flitting overhead.  We all can recall a song within out romantic past which conjures up images of a past partner or event.  The power of sound and smell cannot be underestimated. 

If the engine sound of your chosen aircraft is perfect or near perfect you will barely notice it – the sound will blend with everything else.  However, if the sound is not correct or is video arcade game-like, you will always be thinking how it can be improved.  This is especially so if you’re using the standard stock FS9 (FS2004) or FSX aircraft engine sound.

I feel confident saying that: “with decent sound, your one notch higher concerning realism and immersion”. 

Sound makes a huge difference to the simulation experience.  When on final approach, concentrating on flight adjustments and jigging with the throttle to obtain the correct thrust, the sound you hear, if realistic, will make you forget you’re sitting in your spare room!  It’s like that smell or sound I mentioned earlier – you’re mentally transported back to the source.  I recently trialled the PMDG 737-800NGX in the simulator, and the first thing my girlfriend in an adjoining room exclaimed was “that sounds like a real plane”.  

The recently released PMDG 737NGX has an exceptional sound package; however, not everyone flies this aircraft model.  What is available to augment or replace the default flight simulator sound files?

Turbine Sounds Studio (TSS)

Turbine Sounds Studio (TSS) produces a variety of different sound packages that are direct recordings of the real aircraft engine sounds.  The sounds have been professionally recorded from specific aircraft types and in my opinion are exceptionally good and eons ahead of anything supplied by Microsoft. 

The package to purchase for the B737NG is the: Boeing 737NG CFM56-7B HD Sound Pack for FSX.  If you fly the older classic series B737, TSS also produces a sound package specific to the 300,400 and 500 series aircraft.  To actually hear a sample of the sounds, I recommend your navigate to their website at http://www.turbinesoundstudios.com/

turbine sound studios have a large collection of sound packages available

TTS – Software Installation

The software provides you with an executable file, which when selected, will download to your desktop a “sound” folder containing a number of engine, instrument and ambient sounds specific to the aircraft type.  It’s just a matter of backing up your original sound folder in the aircraft of choice and copying the TSS sound folder in its place. 

How To Add Custom Sounds

If you’re not happy with every sound in the package, it’s quite easy to remove or replace a particular sound with another favourite.  Search for the sound folder, usually located within the aircraft folder (FS10/sim objects/aircraft).  Within this folder you will discover various sounds and a sound.cfg file.  If there are no sound files within the folder, they maybe aliased to another folder in another aircraft. Open the sound.cfg file and note the folder/file location.  Follow the trail until you actually discover where the .wav files are stored.

It's important that when you replace sounds, that the replacement sound is in the same format and has the same file name as the file you are replacing.  If the file name is different, you will  need to alter the specific parameter in the sound.cfg file to reflect the file name change.  The same is for the location of the sound (if this if different).  The sound.cfg file must have the correct name, format and location of the actual .wav sound. 

Always back-Up Before Editing

Always backup the folder and files you wish to edit BEFORE editing anything.  If you make a mistake or something is not quite right, it's then easy and straightforward to put your system back to where it was beforehand.

In my set-up I am using the base NGX sound pack installed into the FS9 737-800; but I have customized a few of the sounds to those that I prefer.

If you want a more or less accurate sound set for the B737, but don't want to go to spend the time hand-picking, renaming and customizing your sound files, then either give TSS a fly or use the PMDG NGX sound set, which is a tad more realistic than the set provided with the PMDG FS9 737.  Whichever set you choose (or combination thereof), it will be far better than the default sound that comes packaged with flight simulator. 

In a future post I’ll tackle the issue of separating sounds to different speakers on different networked computers.  This allows you to have ATC through the headset, engine sounds left and right of the flight deck and other sounds played through another pair of strategically placed speakers..

Well, I’m more or less pleased with my sounds.  Should I throw some avgas on the carpet to get that aviation smell….

Update

on 2020-06-18 03:08 by FLAPS 2 APPROACH

Since the release of this product there have been many advances in sound capture and generation.  Turbine Sound Studios (TSS) have produced a selection of products for varying aircraft types.  To see the complete collection of available sounds, navigate to Turbine Sound Studios.

  • Note I have no affiliation with this store and do not receive any endorsement from them.

B737 Cockpit Companion Guide by Bill Bulfer - Review

737 Cockpit Companion: required reading

The 737 Cockpit Companion is a well known guide within the flight simulation community, having been published in several formats; each dealing with a specific release of a Boeing 737 aircraft series.

The guide, written by retired airline Captain Bill Bulfer, are very specialized and unravel each of the many 737 aircraft systems.  The 737 NG Cockpit Companion 600/-700/-800/-BBJ & BBJ 2 provides a detailed explaination into the following:

The companion may look small, but the information it includes is detailed and informative.  The small size allows easy storing in the side pockets of the throttle quadrant .  In my opinion, this guide is essential reading and answers many questions often asked by flight deck builders and virtual pilots. 

CONTENTS

  • AFT Panel

  • Forward Overhead Panel

  • Glareshield Panel

  • Captain’s Panel

  • Center Panel

  • First Officer’s Panel

  • Forward Electronics Panel

  • Control Stand (throttle)

  • Aft Electronics Panel

Example of a page from the Cockpit Companion

It is important to note that this guide provides much more information than just indicating a name for something.  Each system's functionality is explained in detail along with comprehensive sketches, diagrams and fold out schematics.

For example, in the Captain’s Panel section, there are several pages that explain, the elements that make up the Pilots Flight Display (PFD) and Navigation Display (ND).  There are two pages that deal only with the speed tape providing information dealing with the various options indicated by the tape during ascents and descents. 

Another page details the intricacy of Navigation Performance Scales (ANP and RNP) providing operational information on how to read and decipher the scales in relation to whatever flight mode is set on the MCP. 

A final example is several pages that detail the functionality of the EFIS unit and what exactly occurs when you push a button on the EFIS unit.

Flight Deck Builders

The guide is essential if you are constructing a flight deck and want to simulate the 737 systems.  Apart from systems information, the guide indicates switch functionality and provides information to which lights illuminate for what functions and when.

The guide is not a procedures manual; it is a technical reference manual.  The content will not provide instruction on how to fly the 737.  Rather it provides a detailed study of each system and provides information explaining the relationship between systems. 

No matter what your skill level, It is a very handy reference and strongly recommended.  I often leaf through the pages to cross reference something that I don’t quite understand.

B737 Pocket Reference Guide

Pocket Reference - PFD / ND Flags and FMC Messages

Often when you fly, a message will show on the Pilot’s Flight Display (PFD) or Navigation Display (ND).  Remembering what all the abbreviations mean can be daunting, and often you don’t have the time to open a manual t wade through copious pages that have nothing to do with what you want.

Enter the pocket reference guide.  This small and very handy leaflet guide outlines all the PFD, ND flags and FMC messages and provides a brief description of the flag displayed.  The pocket reference is sold separately to the cockpit companion.  It's size is 10 cm x 5 cm.

Example of page from 737 Pocket Reference Guide

Written by an Aviator for Aviators (real or virtual)

The Cockpit Companion and Pocket Reference Guide, written by an aviator for aviators, is very concise, easy to read and understand.  As with its sister companion, the FMC Guide, it’s a high quality production.

If your serious about how you fly your simulator or are developing your own simulator project, the Cockpit Companion is certainly a must have in your training material.

The guide that is most relevant to the 737 Next Generation is titled: The 737 NG Cockpit Companion 600/-700/-800/-BBJ & BBJ 2

It can be purchased from Leading Edge Publishing.

I will be reviewing another of Bill Bulfer's text in the near future - FMC Guide.

My Rating 10/10

  • I am not affiliated with Leading Edge Publications and do not receive any commission from them.

Headset Communication - Flight Sound X Adapter - Review

Occasionally you come across a device which really makes your simulation life simpler.  I wanted to use the David Clark headset (model H10-13-S) I have owned for sometime in the simulator; however, the two plugs on the headset are the large style plugs suitable for insertion into an appropriate audio module in the real aircraft – not a computer sound card.

Real Headsets Verses PC Headset

Apart from the obvious difference, a real aviation headset is constructed to a very high standard, is robust, and provides a high fidelity sound rarely replicated by an inexpensive PC style headset.  Unlike a PC headset, real aviation headsets are designed to produce excellent sound whilst providing maximum buffering of ambient sounds (aircraft engines, wind, etc). In the simulation world, ambient sound can be dogs barking, cars driving down the street or daughter's yelping... 

Flight Sound X

The Flight Sound X adapter allows you to use a variety of real aviation headsets with your simulator, to filter out engine and ambient noise and hear and communicate with air traffic control (VATSIM, etc).  It’s as easy as plugging in the two plugs from your headset into the device and flying – it is that easy!

The device does not require a separate power source, is small, and connects directly to the USB of your computer via a USB cable.  WIN7 64 bit recognises the device on start-up and additional software and drivers are not required.  A small LED light on the device indicates the unit is operational (red light).

Initial device set-up requires you open the sound module in Windows, navigate to the appropriate menu and change a few settings within your sound card to allow sound and microphone ability to be transferred to your headset.  Instructions (with pictures) are supplied with the device, so you cannot make a mistake – even if you do not read English.

A benefit to using this device is that it’s small and can fit more or less anywhere within your flight deck.  Another pleasant surprise is the device’s construction; it is made from aluminium (painted black) rather than plastic.  As such, it looks quite attractive and is far more robust than plastic counterparts.  Another benefit is the actual placement of the plugs which is at the side of the device rather than at the top of the device.  This ensures that your headset cable and plug are not in a position where you may accidentally stand on them!

Technical Details:

  • USB 1.1 and 2.0 compatible

  • Plug and Play with Windows 7/Vista/XP and Mac OS X

  • Uses standard General Aviation headset connectors (PJ-068 and PJ-055B)

  • Supports headset impedance of 100 to 600 Ohms

  • Supports Mono and Stereo Headsets

  • Compatible with standard microphone types (electric, dynamic and powered dynamic)

  • Powers microphone bias (+9V) from USB port (no external power needed)

  • Zero delay voice feedback (side tone) feature

  • Output frequency response (20Hz-20KHz)

  • Weight: 100g

  • Size: 65 mm(L), 55 mm(W), 25 mm(D)

  • Compact, robust, anodised aluminium enclosure  

Made in New Zealand

The device is made in New Zealand.  The Kiwis usually make innovative and functional products – good work New Zealand…

This device would have to be the simplest item I have purchased, set-up and used with flight simulator.  And it WORKS too!

My rating is 10/10

In a future post we will discuss how to separate sound, so you can hear engine sounds from one pair of speakers and ATC, call outs and navigational aids through the head set.

  • I am not affiliated with Flight Sound X and do not receive remuneration from them.

Navigation and Multi-COMM Radios by Flight Deck Solutions - Review

Navigation and M-COMM radio.  Note the even backlighting and well defined seven -segmented displays.  Also note DZUS connectors

The avionics that are used in the center pedestal are important; they are used regularly, are always visible, must function correctly, and be robust to sustain long use.

This review will discuss the radios produced by Flight Deck Solutions (FDS). In particular, the navigation (NAV 1/2), multi-comm (M-COMM) and ADF (1/2) communication radios.

The navigation and M-COMM radios are USB driven, while the ADF radios use Ethernet.

  • For brevity, I’ll discuss the construction of the panels together, as each of the panels has been constructed and along similar grounds, and functions similarly.

The navigation radio is a single channel radio unit designed to handle navigation frequency selection and management.

The M-COMM is a multi-channel communications radio that replicates the latest radio used in the Next Generation airframe.  The radio encapsulates VHF 1, VHF 2 and VHF 3, HF, HF2 and AM.  For simulation purposes, the M-COMM is an advantage to those who only wish to purchase one communications radio, rather than the two radios (COM 1 and COM 2) traditionally used.

fds ADF radio with rear of radio in background.  The finish of the panel is above par.  Note that the ADF/ANT and OFF/ON switches can be toggled, but are not functional

Appearance and Construction

The panels are constructed using the same technique that FDS to fabricate their Main Instrument Panel (MIP).  

Each upper panel is made from CNC machined acrylic which produces a very crisp finish and allows any stencilled letter cut-outs to be very well defined.  Each of the radios use a dual concentric rotary encoder with a stainless steel stem.

High Quality

The knobs and switches, which are custom machine injected, are true to life and are tactile in feel.  As you click through the frequencies the movement is stable and well defined.  There is no catching from the encoder as the knobs are turned.  The push keys are plastic moulded, back-lit and work flawlessly; they do not stick in the down position when depressed, and click back into position when pressure is released.  The frequency displays are seven-segmented display and are very easy to read.  

The colours of the digits are amber yellow for the navigation and ADF radios and warm white for the M-COMM radio.  The seven segmented display in the ADF radio is a slightly different font to the those in the navigation and M-COMM radios.  The colour is also a tad more orange in hue.  Although slightly different, this doesn’t distract from the overall appearance.

Layer cake design to accommodate the circuitry and the easy to use push clips to connect 5 Volt power (IBL).  Also, note that the circuitry board is not flush to the edge of the panel, enabling the radio to drop easily onto DZUS rails (drop & fly).  Also note the inclusion of OEM DZUS fasteners

Construction

The electronic components needed for the radios to function are contained within each panel. 

As such, The radios do not require interfacing with an interface card and are literally ‘plug and fly’.   The decision by FDS to incorporate all the circuitry within the panels minimises the wiring required, and the problem in finding space to attach an interface card.  

Depending on the radio, there are up to three layers that various electronic circuitry is attached, that includes integrated backlighting (IBL).  The front panel of the radio is backed by a piece of grey-coloured aluminium that adds strength to the unit and assists to dissipate heat from the 5 volt bulbs used to backlight the panel.  An electronics friend had a look at the electronics and was impressed with quality of the electronics board.  

What this amounts to is a well presented avionics panel that accurately replicates the radio in the Boeing 737 aircraft.  The radios are 1:1 in size.

Painting and Finish

All panels fabricated by Flight Deck Solutions, which includes the radios, are professionally painted in Boeing grey.  

Rather than one coat of paint which can easily be chipped, FDS apply several thin coats of paint to increase the durability of the final layer.  Although this point may appear token, the quality of paint and how it’s applied is important, because the radios will be used for many years, and during the course of operation you will be placing pens, clipboards, charts, coffee cups (etc) on the center pedestal and the radios.  Further, as the radio panels are flat, dust will accumulate requiring dusting and cleaning.  Low quality paint will scratch, fade and wear thin within a short period of time.  In my opinion, the quality of workmanship used by FDS, when it comes to painting is second to none.

DZUS Compliant

If you are using OEM parts in the simulator, in particular the center pedestal, then any panel that is DZUS compliant is advantageous, because it enables the panel to be dropped directly onto the DZUS rails to be secured by DZUS fasteners.  The radios can be placed directly onto the rails of an OEM center pedestal and the DZUS fasteners turned to secure the radio to the rail.

FDS IBL Series Distribution Expansion Board.  This board, the size of a credit card, enables 5 Volts to be distributed to several panels.  The coloured wires connect to 5 volts

Integrated Backlighting (IBL) and Power requirements

The radio panels are evenly backlit by FDS’s integrated backlighting (IBL).  IBL has been designed specifically to backlight panels in the identical fashion as is done in the real Boeing aircraft.

Rather than use LEDS for backlighting, FDS use OEM bulbs.  The primary advantage of IBL is the ‘throw of light’ which is greater from a single bulb than a LED (which is pin point).  The only way to achieve a similar light coverage to bulbs with an LED, is to use several LEDS mounted in close proximity to each other.  

Another point for consideration is that bulbs have a different colour temperature to LEDs.  Bulbs are warmer and produce a soft golden glow as opposed to LEDs that generate a harsher cooler light

The backlighting is superb.  The ‘throw of light’ covers all the stencilled letters and there are no dark or bright spots.  The only downside of IBL (if there is one), and this really doesn’t deserve mention, is that bulbs generate quite a bit of heat.  The life of a bulb is also less than a LED, however, FDS claim their bulbs have a life span of ~40,000 hours.

To power the backlighting will require a 5 volt power supply.  Although 5 Volts can be connected directly to the connectors on the rear of the panel, it’s recommended to use a IBL Series Distribution Expansion Board (FDS IBL DIST).

The expansion board will enable 5 volt power to be shared between several panels.  It’s all pretty straightforward and involves connecting some prefabricated wires with clips to the rear of each radio and to the card.  The card is then connected directly to the 5 Volt power supply.  The card I use is secured within the innards of the center pedestal.

To power the M-COMM 12 volts is required, in addition to 5 Volts for backlighting.

fds Ethernet switch and pen for scale

Connection and Set-up

If you are using avionics software other than ProSim737, software will need to be downloaded from the Flight Deck Solutions website (Texworx).

The software is very easy to use and installation self explanatory.  

Configuration of the radios is done via the software and involves indicating which NAV module is operated by which pilot (Captain or first Officer).  The M-COMM module uses the same software (you check the option for this panel during set-up).  The software is not required if using ProSim737.

If using ProSim737 avionic software, the ProSim-AR generic driver will recognise the FDS radios when they are plugged into your computer.  The radios will need to be configured (Captain or First Officer) and this is done in the config/driver section of ProSim737.

The concept of USB doesn’t need discussion, however, the ADF radios are connected via Ethernet. 

While it's possible to connect each radio separately to the main network switch, it’s easier to use a smaller network switch as a hub.  The switch I’ve used is supplied by FDS, is relatively small, can handle 8 Ethernet devices (expandability), and can be mounted into the center pedestal.  A single Ethernet cable then connects the FDS switch (hub) to the main network switch (and then to your computer).

If using Prosim737 avionics software, the radios (USB or Ethernet) can be connected to and run from the client computer.

Rear of ADF radio showing PCB, rear of encoders and push clips

Reliability and Performance

I’ve had the occasional dropout of the navigation and M-COMM radios, however, the ADF radios have worked flawlessly. 

I suspect that the reason for the navigation and M-COMM radios dropping out, is that the USB cables are connected to a powered hub, along with several other items.

I did trial the Tekworx software (using Sim Avionics) and I had several dropouts with the navigation radios that could not be rectified.  These dropouts stopped when I transferred to ProSim737.  

In some radios, there is a time lag when charging the radio frequency.  This time lag may be system dependent and/or a response to the limitations of USB.  This delay is not evident with the FDS radios.

Support

Support from FDS is either directly via e-mail or by a dedicated forum.  The support provided by FDS is outstanding and all e-mails are answered in a timely manner.  

Quick List (pros and cons)

PROS

  • Well designed & constructed (plug and fly).

  • Excellent workmanship.

  • Excellent painting.

  • Realistic Integrated Back-Lighting (IBL) with excellent illumination.

  • Realistic quality machine-injected switches & rotaries.

  • Size ratio is 1:1.

  • Very high attention to detail.

  • OEM DZUS compliant (drop & fly).

  • Easy to use and set-up software (if not using ProSim737).

  • M-COMM radio ideal if space is limited in pedestal.

  • Native support for Sim Avionics and  ProSim737.

CONS

  • Expensive price (subjective).

  • Tekworx software (V 1.8.8. & V 1.9.9) caused disconnection (drop-outs), however, no issues when using ProSim737.

Final Call

The radios are solid, well constructed and the attention to detail is as you would expect from Flight Deck Solutions.  The quality of the radios is very high and suits the high-end enthusiast to professional market.  

My rating for the Tekworx software is 5/10  (V1.8.8. & V 1.9.9)

My rating for the modules is 9/10

Please note that this review is my opinion only and is not endorsed.

  • Updated 13 July 2020.

Populating the B737 Center Pedestal

oem 7373400 center pedestal (two bay). avionics include cp flight, flight deck solution and oem. this pedestal has since been replaced with a three bay pedestal

The centre pedestal I’m using is a real aviation part procured from a South West 737-300 series aircraft. The pedestal came attached to the throttle quadrant and is the more uncommon two bay style. The Next Generation uses a three bay center pedestal.

I was reluctant to destroy a piece of aviation memorabilia, so rather than cut the pedestal from the throttle and discard it, I decided to keep the two bay pedestal and limit myself only to essential avionic modules.

Apart from the nostalgia of using an OEM pedestal, I really like the DZUS rails that are used in a OEM pedestal, which allow you to drop the various panels into place and secure them with a DZUS fastener.  To read about DZUS fasteners, navigate to my earlier post.

In this post I will discuss populating the center pedestal with panels, and touch on using the panels from a comparative newcomer - SISMO Solicones. I will also discuss some of the problems I had with installing reproduction panels to the OEM center pedestal.

No International Standard  - Variation

There is no international standard established to indicate which model/type avionics are installed in a center pedestal; more often than not, it will come down to the type of aircraft and a particular airline’s requirements.  Early series 737s were fitted with a two bay center pedestal which minimised the number of panels that could be fitted.  Later model 737 aircraft and the Next Generation aircraft series use a three bay center pedestal that enables installation of the latest navigation and communication equipment.  There are benefits to the thinner two bay pedestals, the main positive being more room to climb into the flightdeck.

All 737s will have as a minimum the following avionics installed:  Fire Suppression module, NAV1/2 COMS 1/2, ADF 1/2, audio, rudder trim and transponder.  The important modules will be duplicated for First Officer use and redundancy should a failure occur.  Depending upon the aircraft series, the following may also be installed: thermal printer, HUD set-up, radar, cargo door panel & floodlight switches, alternate communications, etc, etc (the list is almost endless).  Much of what is installed depends on the use of the aircraft, civil regulations in the country of use and the requirement of the particular airlines.

Module Location

As with colour, there is no standardization to the location within the pedestal for any particular panel - perhaps with the exception of the fire suppression panel and NAV 1/2 module which (usually) occupy the forward part of the center pedestal.  Modules are fitted wherever they fit and in line with whatever specification that the airlines requires.  For example, I have observed Audio Control Panels (ACP) mounted toward the rear of the pedestal, which I believe is the favoured position, and also towards to front of the pedestal.

Another interesting aspect to observe is the different knobs on the NAV and ADF radios.  Often simmers became mentally entangled in attempting to standardise everything across their simulator.  This is not necessary; it is realistic if you mix-match panels to a certain degree.

The center pedestal is populated with the following modules:

  • NAV-1 (Flight Deck Solutions)

  • NAV-2 (Flight Deck Solutions)

  • M-COMM (Flight Deck Solutions) new style module that incorporates all radios in one module

  • ADF-1 (CP Flight) - replaced with Flight Deck Solutions.

  • ADF-2 (CP Flight) - replaced with Flight Deck Solutions.

  • Rudder Trim (CP Flight) - replaced with OEM.

  • ATC (transponder) (CP Flight) - replaced with OEM.

  • Fire Suppression Module (OEM 737-400 converted for FS use) - replaced with 737-600 NG.

  • Audio Control Panel (2) (ACP) (OEM 737-400 unit – at the moment, wired only for backlighting)

Avionics Mania

Unless you have an unlimited budget, or have panel sickness, you may want to think about how often you will use a particular panel.  Navigation (NAV 1/2 & ADF 1/2) and communication (COM1/2) modules will be used on every flight; therefore, it’s best to purchase a high-end panel for consistency and reliability. 

The rudder trim module and Audio Control Panel (ACP) are rarely used, with the exception of engine out operations and for turning on/off the audio for the various navigational aids. 

This is a side benefit to using a two bay center pedestal:  there is only so much room available, so you are forced to decide on which panels take precedence over others.

Maintaining Brands – almost impossible

I had wanted to maintain the same brand of modules across the sim to minimise the number of different system cards and interfaces, however, this was difficult to do. 

Flight Deck Solutions, a premium upper shelf supplier of simulation parts to the professional and enthusiast market, do not at the time of writing, manufacture and sell an ADF navigation radio panel.   Further, FDS do not produce the older style ATC (transponder) panel; they only manufacture the newer push button type, and I favoured the older style.

As the MCP I am using is manufactured from CP Flight, and I also have an older style CP Flight transducer, I decided to opt for the CP Flight ADF navigation radios. CP Flight have an easy method to daisy chain panels together. Unfortunately due to supply issues this was not to be the case.

OEM Panels

Nothing beats OEM panels and I am hoping in time to replace many of the reproduction panels with OEM components. In the meantime, I will be using reproduction panels.

SISMO Solicones

A relative newcomer to the scene attracted my attention – a Spanish company called SISMO Solicones.  Their products are reasonable quality for the price paid, are 1:1 ratio to OEM panels, use Ethernet rather than USB, and relatively easy to configure. 

I was very keen to trial Ethernet as a method to connect the modules to the computer. 

SISMO SOLICONES. Note the electronics tab that needs to clear the DZUS rails for installation.  A poor panel design if using an OEM center pedestal

Module Size – Size Matters!

It’s very important to check that the panel will fit correctly to whatever pedestal you are using.  If you are building your own pedestal without rails, then this is not an issue as you can easily fashion a template to drop the panels into.  However, if you are using an OEM panel, you will need to ensure that the panels are built in such a way that they drop into the existing rail system in the pedestal, otherwise you may need to alter your rails.

ADF Navigation Radio Panels – Attaching to the DZUS Rails

The avionics panels made by Flight Deck Solutions are literally drop & forget as all FDS panels are DZUS compliant and fit OEM DZUS rails perfectly.  The ADF radios from SISMO are a different matter.  Each of the panels has a small tab on the electronics board which is too wide to navigate past the DZUS rail in the pedestal.  This is a major issue as the panel cannot be dropped onto the rails.  Why SISMO designed them this way is beyond me, as many serious simmers use OEM center pedestals.

Cutting the Rail – Delicate Operation

Although I was reluctant to cut the DZUS rail, I realized that this was the only method available to correctly fit the SISMO ADF panels.  The rail had to be cut and a portion removed that corresponded to the size of the tab. Removing a portion of the rail would allow the panel to then be dropped into the pedestal. 

OEM 737-300 CENTER PEDESTAL WITH RAIL CUT TO ENABLE REPRODUCTION PANEL TO BE INSTALLED

The DZUS rails are attached at regular intervals to the inner side of the pedestal by several aluminium rivets.  The rivets are not moveable and unfortunately a rivet was located directly where the rail was to be cut. 

After triple checking the measurements, I used a dremel power tool and small metal saw to gently cut into the aluminium rail until flush against the edge of the pedestal.  The cut piece of aluminium rail then was able to be removed; however, the rivet body remained.  I then used a metal file to carefully grind away the end of the rivet head until flush with the pedestal side. 

In addition to this, each of the attachment holes of the panelss needed to be enlarged slightly to accommodate the male end of the OEM DZUS fastener.  This job was relatively easy and I used a quality drill bit to enlarge the hole.  A word of caution here – SISMO do not use metal backing plates, so if you’re over zealous with a drill, you will probably crack the plastic board.

Once the sections of DZUS rails were removed, it was only a matter of dropping the panels into the pedestal and securing them with DZUS fasteners.

SISMO SOLICONES rudder trim and ADF module with power pack.  The rudder trim is A MEDIOCRE reproduction of the real unit. however, it lacks finesse in its final construction. I DO NOT RECOMMEND USING THESE PANELS

System Cards & Wiring – Location, Mounting & Access

I was very surprised at the number of cards required to use SISMO panels.  An Ethernet card is required as is a daughter and servo card.  There are also two power sources: 5 volt powers the small servo moto) that moves the rudder trim gauge and 12 volts powers the module backlighting. 

My main concern was where to mount the cards.  Initially, I was going to mount them under the main simulator platform, but access for maintenance was a problem. I decided to utilise the inside of the pedestal beneath the modules.  This area is rather cavernous and a good place to house the cards and wiring needed for the modules (out of sight and out of mind).

Constructing an Internal Board – to attach cards to

I cut a piece of thin MDF board to roughly the height of the pedestal interior and fitted it in such a way that it created a vertical partition.  To this board, using both sides, I attached the various cards needed.  To ensure that the flat cables had enough room to reach the various cards, I cut a slot in the center section of the board.  I also made sure there was enough room at each end of the board to allow cabling to snake around the partition. The most important point to remember is to ensure that none of the cards touch the metal sides of the pedestal or each other; to do so will cause an earthing problem. 

Wiring wasn’t much of an issue, as SISMO supplies prefabricated flat wiring with plastic clips.  All you need to do to attach the correct clips to correct attachment point on the card – very easy with absolutely no soldering.  As the Ethernet card is mounted within the pedestal, the only wires that need to be threaded through the lower throttle section of the pedestal are the power cable and the Ethernet cable.  The later connects to the Ethernet switch box that is mounted to the shelf of the FDS MIP.

The pedestal innards are now full of intestinal-looking wires attached to an assortment of cards.  It looks messy with all the wiring, but as the wires are flat wires with solid connectors, it is very secure and logically set out.  Access to the wiring and cards is achieved by removing two or three modules. 

Update

on 2012-07-25 05:48 by FLAPS 2 APPROACH

After trialling the panels manufactured by SISMO, I wasn't impressed.  The ADF navigation radio gave spurious results which were intermittent, and the frequency change switch did not provide consistent operation - sometimes it worked and at other times it was sticky and needed to pressed a few times to initiate the frequency change.

The rudder trim module also did not work correctly, even with the correct SC Pascal script. 

The Transponder ATC module looked OK, but never worked as a script was not supplied.  The Audio Control Module looked absolutely awful with poor quality switches and cheap and nasty-looking plastic buttons.

Rather than fight with cards, wires, and a software medium (SC Pascal scripts) which I don't have the knowledge to edit, I decided to box everything and send it back to SISMO for refund.

The SISMO panels have been replaced with panels made by CP Flight and OEM panels.

Look Dad - No Mouse! - CP Flight PRO MCP & EFIS Installed

cp flight pro mcp

In an earlier Journal entry, I mentioned that the CP Flight main control panel (MCP) PRO version I had purchased last September (before I embarked on the B737 Project) appeared to be faulty.  For some reason the MCP would not register on the USB port of the computer.  After many hours of wasted time, I returned the unit to Italy for either repair or replacement.

Just before Easter I received a replacement unit.  Paolo from CP Flight had decided to replace the electronics. 

Installation & Configuration

Installation of the CPF software and configuration of this new unit worked first time without any problem whatsoever.  Configuring the MCP to operate with Sim Avionics was straightforward and required some basic changes to the Server.exe configuration files.  I also had to clone the TCP_Client.exe and MCP.exe folders and copy these to the main server computer that has FSX and the MCP installed.  These folders and files need to be installed on the same computer as the MCP software and hardware is installed to allow Sim Avionics to recognise the device.

Simulator Start-Up Procedure

So what happens now is that I start FSX on the main server computer, then once FSX is running and the flight is open, I activate the MCP.exe shortcut which turns on the CP Flight MCP.  The process of the MCP.exe been turned on triggers the TCP_Client.exe to open and search for it’s counterpart on the network.  Turning on the Sim-A Server.exe (via a batch start file located on the client computer) allows the programs to communicate and the appropriate software to open on the flight deck.

cp flight pro mcp backlighting

Backlighting – An Initial Mystery

To connect the CP Flight backlighting was a mystery until SIM-A support informed me that you can either select a check box within the SIM-A server display window which causes the backlighting to be permanently on, or create a FSUIPC offset to a switch using the aircraft’s storm lights for manual activation.  I choose the later and have the backlighting set to a toggle on a GoFlight module.  This will suffice as I do not as yet have an overhead installed.

My Opinion of the Unit

The CP Flight MCP and EFIS unit has been discussed many times in various reviews and on U-Tube; the consensus being that the majority of users are very happy with the product.

The unit is well made, is aesthetically pleasing, and works as it should.  The backlighting is very good and the green buttons that indicate whether a function is turned on or off are very visible.  The unit is quite light in weight compared with other MCPs on the market, so it must be installed solidly into the MIP to minimise movement when pushing buttons, etc.  The solenoid operated A/T switch is a nice change to the normal flick type switch and the use of replica DZUS fasteners is a nice touch.

CP Flight support is also beyond reproach.  Paolo is helpful, courteous, and attempts to find solutions when a problem is evident.  I had an issue with my first MCP and Paolo spent considerable time with me working through issues attempting to find a solution.  CP Flight is not a “buy and forget” you type of company.

cp flight mcp pro

Major Advantage

One of the major advantages in using products from CP Flight is the very easy connectivity with other CP Flight modules.  The CP Flight family of modules are connected together by a daisy chain system.  A 5 pin (5 pole) DIN cable connects each module to each other with the main power being supplied by the MCP and its external 6 Volt power pack.  Connection to the computer is via a single USB cable.  What this makes for is a very simple, clean and modular way of installation.  There are no cards to connect or to find homes for -  nor any messy wiring.

Caveat

The only caveat is that the size of the MCP and EFIS are not an exact 1:1 ratio to the OEM 737 MCP and EFIS.  The CP Flight instrument is slightly narrower that the OEM counterpart.  Whilst this is not a major issue, it does pose a slight problem if you are using an OEM MIP, or a MIP that is sized correctly to the real part. 

If you are using a MIP made by FDS, an additional bracket assembly is required, and even then there is a slight gap between the MIP and MCP unit.

This brings me to an interesting point.  Not all MIPS are the same size nor are they all an accurate 1:1 ratio.  CP Flight is used  exclusively with the MIP produced by Fly Engravity, so it stands to reason that the Fly Engravity MIP will fit the CP Flight products accurately.  if you are using another brand MIP, then it is best to check before hand to ensure that the CP Flight avionics will fit correctly.

Nice to Fly without a Mouse….

Whatever the difference in size, It’s very pleasing to be able to fly without a mouse and have something to fill the gaping hole in the MIP.  I’ve solved the issue of the spacing difference by cutting some thin acrylic to the appropriate size and painting it Boeing grey.  Once fitted, you barely notice the slight gap.  Sometimes you have to compromise...

Although this post is not a review, if pressed to give a rating it would be 8.5/10

Now that the MCP and Captain EFIS is fitted and working, I need to order an additional EFIS unit for the Flight Officer side. 

Next on the agenda will be to populate the avionics for the center pedestal. 

Update

on 2015-09-23 13:03 by FLAPS 2 APPROACH

The CP Flight connection issues that were occurring have been rectified by a software update from CP Flight. With connectivity reassured, I have ordered additional CP Flight panels (two ADF navigation radio panels and a rudder trim module).

First Officer EFIS

The second EFIS has arrived and has been installed into the simulator.  The ease of installation of CP Flight modules should not be taken lightly; they are literally plug and fly.  To install the second EFIS unit involved me connecting a 5 pin DIN cable from the Captain side EFIS to the FO EFIS unit.  I also had to move the small slider pin on the rear of the unit to reflect either captain or first officer.

I wish all panels were this easy to install.

Sim Avionics Flight Software - Review

I've heard it said that a "simulated flight deck is as good as the software behind the scenes" and I agree with this comment: a flight deck with poor software is a hive for frustration, disappointment and time wastage.

It's easy to write about the features and functionality of Sim-A as they are plentiful; but, I don't want to become too bogged down in minute detail, otherwise I’d be writing a manual.  This review will not address in detail everything that Sim Avionics (Sim-A) software can or cannot do; if your interested in a full functionality list, it’s best to check their website, as functions are altered and improved upon on a regular basis. 

Before continuing, it should be noted that there are several flight avionics suites currently available on the market.  They all replicate the basic avionics functionality of the B737.  However, not everything is operational with each suite and some functions behave differently between suites.  Therefore, it’s a good idea to research what works and what doesn’t before your purchase. 

Sim Avionics is a complete avionics solution providing the avionics software needed to build a fully functioning home cockpit; no other software is required.  It has been designed to run on multiple PC's in various configurations interfacing with FS2004 (FS9) or FSX via FSUIPC and Wide Client.

Relative Newcomer

Although a newcomer to Sim-A and still learning some of the more advanced features of the software, I thought it pertinent that I make an "introductory review".

Reliability

Reliability is the most important aspect of any software.  To date, Sim-A has performed as one would expect from any high-end payware software. Overall, the software is reliable, performs well, and appears to be a robust and stable platform with consistent responses.

Certainly, it seems much more stable than some of the competitors on the market (if comments on flight simulation forums are anything to go by) and is far easier to use than some other well known brands.  But, it must be remembered that the software is only as good as the information inputted; therefore, if you try and do things that the aircraft & software is not designed to do, expect problems.

Further, you must bear in mind that no one computer (PC) is the same as another.  Different drivers, software, flight models and hardware configuration can cause any software to behave erratically from time to time.

This said, Sim-A can on occasion produce spurious results.  This is mainly associated with the more advanced auto pilot functionality and user operator errors!  

I’ve documented the issues and fixes, including some user operator errors, that troubled my installation below.

Issue 1 - Trim Tab Dancing

Now and again the trim tab will become unstable as the auto pilot continually recalculates the required pitch for the aircraft at the current speed.   The trim tab will “dance” causing the aircraft to pitch up and down. The trim dance (as I call it) occurs only on flights that have weather depicted, and it doesn’t occur on every flight.

FSUPIC to the Rescue

Although a little disconcerting, I believe the cause is not so much Sim-A, but the way the weather, especially aloft winds, are generated causing the elevator to continually move to counter weather differences.  There is a tab within FSUPIC that stops the elevator trim from operating when the aircraft is in auto pilot mode.  Since checking this FSUPIC setting (placing a tick in the box), the trim dance I was observing has decreased markedly and is now nonexistent.

Information for the auto pilot is located within the aircraft's configuration file.  If auto pilot trim issues persist then some minor tweaking of the numbers maybe required.  If this happens to you, then be rest assured that FDS and Sim-A staff will assist you with any minor tweaking to get you flying.

I’ve discovered that if the auto pilot does not provide consistent outputs (such as trim dancing), an easy method to often solve the issue is to switch the auto pilot command button off and then back on. 

Issue 2 - V-Nav Inconsistency

Replicating the more advanced B737 auto pilot functions requires complicated algorithms.  This is especially so with vertical navigation (V-Nav).  

Sim-A handles V-Nav reasonably well, although you have to keep an eye on what V-Nav is doing, espeially when transitioning from level flight to descent and approach.  On some flights, V-Nav honours the speed and altitude restrictions and transitioning the STAR to approach is accurate.  However, at other times restrictions are not followed and the aircraft will overshoot the height and speed restriction.

V-Nav always operates correctly on take-off utilizing a Standard Instrument Departure (SID).

There is no particular reason for this - it just happens from time to time.

Understanding V-Nav and what its doing can be challenging

The challenge, I have discovered when using V-Nav is two-fold.  First and foremost, you must use it within the designed capabilities of the program, and second, you must learn how and when to operate V-Nav.  If you enter data that the FMS cannot assimilate, such as an altitude that is too high or too low, for the time required to reach the waypoint, then expect an overfly of the entered restrictions.  This is not the fault of Sim-A.  It's user error

Sim-A, in my opinion is not alone with minor V-Nav issues; Project Magenta, Pro Sim 737 and others also have difficulties replicating this complicated algorithm. Indeed, real pilots are often confused understanding how V Nav operates and why it's doing whatever it's doing! 

This is one reason why V-Nav should only be used as a guide and not as an absolute.  If V-Nav, for whatever reason does not function in a method you believe to be correct, then turn it off and use the more reliable L-Nav, Level Change or Vertical Speed functions.

Issue 3 - Display Lag and Staggering

There is minimal display lag running Sim-A and FSX (using two computers). 

The gauge movement of the displays is fluid and there is no pausing as information is shuttled to and from the computer and Sim-A.  However, if “all waypoints” is selected to be displayed on the ND, then staggering becomes obvious on the Main Flight Display’s altitude tape, as the aircraft ascends or descends in altitude. 

I’ve been told by long-term Sim-A users that this is normal as the information required to display and update the “all waypoints” is very comprehensive and can easily generate an “information bottleneck”.  The solution is easy – turn off “all waypoints” when climbing, descending, or on approach.  Honestly, I rarely have "all waypoints" selected and only use this function if I am searching for the nearest waypoint to make an alteration to the flight plan.

I have not experienced any display lag or staggering issues with other EFIS functions. 

Issue 4 - Software Server.exe Lock-up

When you read this title, I can image the thoughts going through your mind.  But, this is one of those negative aspects that has a very positive twist. 

Although the software has never crashed to desktop, it has on occasion “locked up” requiring a reboot of the Sim-A server.exe.  The lock up usually occurs when I have been repeatedly doing something incorrectly, such as keying into the CDU  incorrect information, therefore; the lock-up caused by user error

If this issue should occur (for whatever reason), it's only a matter of closing the server.exe using the shutdown command tab and then reopening the server.exe window.  You do not need to close down Sim-A or FSX. 

This brings me to the positive twist I mentioned in the earlier paragraph.

Outstanding Sim-A Feature

Of the many features Sim-A has, the ability to historically re-set the software without loosing your flight details or actual flight (in real time) is probably one of the more beneficial. 

If a problem should transpire during a flight causing the server.exe display to freeze or something to stop working, you can re-set the software by closing the server.exe display and reopening it.  The interruption to your flight will be seamless, providing you depress the tab “last state” within ten seconds of reopening the server.exe display window.

This is but one of several "smart" features that are often overlooked.

sim avionics server user interface

Functionality Controlled by Control Panel

Sim-A’s central access point is the control window (server.exe) which is always visible on your “flight configuration” monitor. 

The server.exe display window is the core of the program and shows the current “avionics” status of your aircraft (EFIS settings, weather, terrain, TCAS settings, aircraft details, engine, hardware settings, etc).  The display also provides a handy central area in which you can tweak the aircraft’s .cfg file, FSUPIC settings, offsets and so forth.   For more detail on this comprehensive display I direct you to the Sim-A website.

The Sim Avionics server user interface is where you can control all of the Sim Avionics variables.  It does look complicated and there is a lot of information on the screen; however, it took me less than 30 minutes to get a rough idea what was happening and get into the air.  Menu tabs open up further screens and all settings are automatically saved on a regular basis. 

Sim Avionics Features

At the minimum, the Sim Avionics avionics suite will display the following:

  • Captain and First Officer Primaryt Flight Display (PFD) and Navigation Display (ND)

  • EICAS Display (upper & lower) with fully integrated EICAS messaging

  • Virtual Main Control Panel (MCP)

  • Virtual EFIS Displays (2)

  • Virtual overhead panel

  • Virtual CDU Display

  • Multiple CDU Support

  • Support for Hardware MCP & EFIS

  • Complex Auto Pilot Functionality (SINGLE CH, LAND 3)

  • Sound module

  • EGPWS and TCAS

  • B737 system logic

  • Weather Radar (weather) & Terrain overlay displays

  • Virtual stand-by instruments (assorted selection)

  • Fuel & scenario loading platform (dispatcher console)

Other functionality, such as instructor station, and observer CDU is available depending upon which license type you purchase.

To see screen grabs of the display functionality of Sim-A (PFD, ND, radar, etc), navigate to the Sim Avionics website.

Of course, if you are operating a full flight deck with the appropriately supported hardware you will not require the virtual MCP, EFIS, CDU and overhead displays.

Support for Add On Hardware, Flight Models & Software Cloning

Speaking of hardware, SIM-A supports many of the popular hardwired instruments available on the market.  For instance, the CP Flight MCP and EFIS units are, with some minor .cfg  file alterations plug & fly.  Similarly, GoFlight and Flight Illusion products are easily configured for Sim-A use.

Currently SIM-A supports the B737 and the B777.  Several B737 and B777 aircraft configuration files (FS9 & FSX versions) are available within the software: default model, PMDG, Posky, Wilco, XPlane and Meljet.

Another feature of Sim-A is the ability to run certain aspects of the software from different computers.  For example, you can clone the sound module to run on different computers, thereby, playing aircraft sounds through one set of speakers, and ATC commands through another set of speakers (or headset).

CDU - Background Software

No review of Sim Avionics would be complete without a short segment on the CDU.

Sim-A is the controlling software that provides the intelligence behind the CDU.  It's amazing what this software can do, and do so with reliability and consistent behaviour. 

Most pages associated with a commercial CDU are modeled and updates continue to add new features and improve on existing functions.  Some of the basic features that are modeled by the software are:

  • Indent page on start-up (weights, fuel, cost index, etc)

  • Approach reference page with VREF selection

  • Route, LEGS, Arrival, Departures & Holding pages (user controlled including approaches, STARS & transitions)

  • Progress pages (fuel, distance to go, ETA, wind, crosswind component, cross track error, fuel prediction etc)

  • Cabin calls

  • METAR (real time)

  • V-Nav & L-Nav compliant (climb, cruise and descent)

  • GPWS overrides

  • NAV radio page (ADF, VOR & ILS data)

  • ACARS

  • Captain EFIS control

  • SIM control page (separate commands to control SIM instead of using keyboard)

To see screen grabs showing the various features available, navigate to the CDU page on the Sim Avionics website.

Further Functionality

I/O Interfacing and FSUPIC is fully supported as are FSUPIC offsets, and if your using an FDS MIP, a program called InterfaceIT provides an interface for connection of switches, lights and other modules to Sim-A. 

Documentation

A manual is supplied with the software and there are several documents (within the documentation section of the main Sim Avionics folder) that assist in the correct set up procedure. It is VITAL that you read all the documentation BEFORE installation. 

For a more in-depth look at how the autopilot functions, see the Autopilot Functional Examples - Sim Avionics booklet. The booklet can be downloaded from the documents section. This document provides an excellent review of MCP procedures in relation to takeoff, descent and landing (ILS & LAND 3).

Software Installation

Installation is uncomplicated.  However, there are a number of changes you need to make to several files to ensure correct operation.   Additionally, if you’re using two computers then basic networking knowledge is required, as are the programs Wide Client FS and a registered copy of FSUIPC.

Determining the correct location for the various avionics displays on the computer monitors (within the MIP) is straightforward, although fine-tuning the location on the monitor can take a little time.  Basically, you alter the length and width of the various displays within the config files.  Once you know how this is done, it's just a matter of altering the line numbers until your satisfied with the result.

When Sim-A is set-up correctly, everything is relatively painless and obvious - more or less “following your nose”.

Running a flight deck isn’t pressing a button and “presto” there it is… 

For the avionics suite to operate correctly, several programs or clones of the program must be loaded.  At the minimum this is:

  • Captain's PFD and ND;

  • ND, First Officer's PFD and ND;

  • CDU Captain;

  • EICAS;

  • CDU First Officer;

  • Server.exe;

  • Tcp Client;

  • InterfaceIT;

  • Wide FS and Sound; and,

  • The dispatcher console (if required).

The window displays are opened by clicking the .exe shortcut files. These shortcut menus are installed to your desktop when installing Sim Avionics.

To minimise the time in loading and to be user friendly, a handy program has been included with Sim-A, hidden within the documentation folder; it is a start-up batch file. This program allows to you start all the functions and displays with the click of one button.

I've compiled a short video showing how the program automatically opens and loads the software using the batch file. In my set-up, Sim-A is installed and operates from my second computer (client). 

BELOW: Batch file start of the Sim Avionics software.

 
 

BELOW: Various functionality available via the main Sim Avionics display server.exe user interface.

 
 

Ownership and Support

Sim Avionics is the preferred avionics suite of Flight Deck Solutions.  If you purchase an integrated MIP from FDS, Sim-A is the flight software that will be supplied. 

Support for Sim-A is provided by the software’s main engineer and FDS staff.  Help can be obtained either via the active support forum (on the FDS website) or via e-mail.

Continual Development & Financial Investment

Sim Avionics is not an inexpensive investment, however, it’s pleasing to see continued development of the software; updates that add or improve on existing functionality are released on a regular basis.  Furthermore, the software designer is open to suggestions from users on how to enhance the software.

At the time of writing, if you purchase Sim Avionics through Flight Deck Solutions then the price of the software includes full support and updates for an unlimited time period. 

Recommendation & Overall Score

Sim Avionics is a stable, well tested and tried software platform that provides most of the real-world avionics of a B737 jet-liner.  The software is easy to install and use, however, advanced knowledge is required to use some of the advanced features such as FSUIPC offsets and the like.  All avionics software has issues from time to time, and Sim-A is no different, but the ongoing development of this software and a solid support structure can only be seen as positive.

To investigate Sim Avionics more closely, visit their website.

My Rating is 8.9/10

  • Please note that this review is my opinion only and is not endorsed.

Update

on 2014-12-15 21:31 by FLAPS 2 APPROACH

The Sim Avionics software has been updated to a newer version.  Therefore, the issues mentioned in this review may have been rectified.  I have not used the updated software. 

Wings & Arcade Games

qantas embroided pilot wings

Real-world pilots, whether military or civilian based, earn their wings.  Wings are a symbol of the time, study, work and effort that an individual has gone through to receive their pilot rating.  

In the military, receiving your wings represents more than just training.  For many, it’s the inclusion of being part of group of similar-minded individuals and allegiance to a particular squadron or unit with its inherent history. 

For example pilots joining 19 Squadron in the Royal Airforce become part of the history of the squadron which began operations during the First World War and included during the Second World War, pilots who flew in the Battle of Britain.  QANTAS pilots become part of the history of the airline, which began in the Northern Territory and is one of the oldest airlines still flying today with its original name. 

So where am I going with this?  Most of us are NOT real-world pilots, although many “simmers” may have a flying rating of some type.  To fly (correctly) a fully functional simulator still requires in-depth knowledge, time, study and effort on behalf of the person building and flying the simulator.  All too often, the task of learning to fly the “right way” is lost with Flight Simulator. 

Many people enjoy using slight simulator; jumping into whatever aircraft they choose and flying over terrain that otherwise they may not have the opportunity to view.  There is nothing wrong with this.  But, to truly engage flight simulator and see what it can offer, you have to stop and step back from the actual playing, and enter a world similar to that of a real-world pilot: study, work, effort, and an expenditure of time to learn the basics of airmanship and grasp the technical aspects of flying whatever aircraft you have chosen to simulate.  Learning the theory, at least initially, far outweighs the actual time spent flying in the simulator.

In some respects, simulation flying is more frustrating than real flying, as finding the appropriate study material is not easy.  There is only a limit to what books can teach you, especially when you are learning a high end aircraft such as the Boeing 737.  At some stage, you will need the guidance of a real-world pilot to instruct you in the correct method to apply the techniques learned.  

So, the next time someone suggests to you that you are just playing an arcade game, remind them of the time, study, work and effort that you’ve expended to be at whatever skill level you’re currently at. 

Wings, no matter if they are real or virtual, are earned (if only in the time spent reading) and are not given away!

737-300 Telephone & Microphone for 737-300 Center Pedestal

737-300 internal communications

I have installed to the rear of the center pedestal the correct telephone and microphone for the 737-300 aircraft.  Neither item is necessary, but it adds to aesthetics and fills the empty gap where the telephone should have been installed.  Although the telephone and microphone are functional, they have not been configured to operate with the avionics suite or flight simulator.

The center pedestal and telephone are not from a 737-800 aircraft, nor would they ever be seen on a Next Generation aircraft; they fill a gap until the respective OEM components can be found.

Sometimes it’s a matter of what is available, or waiting until a part becomes available. In this case, I decided to use what was available.

This type of telephone and microphone (as well as other types depending upon manufacture) were used on the 737-300 through to the 737-500 aircraft.

As you can see from the photograph, this telephone has been there and done that!  The telephone is considerably scratched, but I prefer using part that shows service, rather than using a shinny new reproduction item.

Main Instrument Panel (MIP) by Flight Deck Solutions - Review

 
 

Overview

The main instrument panel (MIP) is arguably one of the most important pieces of equipment in a flight deck; it is around the MIP that everything revolves.  Every enthusiast wants the MIP to be athletically pleasing and as real to the OEM product as possible.  Depending upon the end use, the MIP may act as a skeleton from which to add OEM parts, or standalone accommodating reproduction parts.

There are several companies that produce MIPS and each has its nuances.  After extensive research, Flight Deck Solutions (FDS) in Canada was commissioned to supply the MIP.

Note that in this review, reference is made to the term OEM which is an acronym for Original Equipment Manufacturer (aka real Boeing 737 aviation part).

The image above is the Duel Seat Training Device offered by Flight Deck Solutions (image courtesy and copyright FDS).

Information - Not Pretty Pictures

This post is not intended to be an exhaustive review of the FDS MIP or the parts attached to the MIP.  Rather, the intent of the review is to provide adequate information for enthusiasts to make an intelligent decision to which MIP to purchase.  

Furthermore, it is important to understand that all reproduction simulator parts are exactly that - a reproduction or facsimile of a real part.  Often reproduction parts are not to scale and have subtle differences to the real item.  Whether this is important is at your discretion and very much depends upon whether you intend to use OEM parts or solely reproduction parts.

To view images of the MIP, navigate to the image gallery

Interface cards have not been discussed for two reasons.  First, there are several differing types of cards that can be used, and second, Integrated Cockpit Systems (ICS) units come ready-made with all wiring and interface cards installed. 

ICS and Options

FDS provide two options when purchasing their MIP - naked (do it yourself) or as an integrated cockpit system (ICS).

The ICS route was chosen because of time constraints; by eliminated the task of wiring and soldering a multitude of interrelated electronic parts together, it would allow more time to concentrate on converting real aircraft parts to use in the simulator.  At the forefront of the B737 project, the MIP was to be a skeleton from which to hang OEM parts.

The MIP consists of two sections; the main instrument display including the lower display and glare shields (eyebrows), and the base structure incorporating the CDU mounting area, lower display and stand.

FDS landing gear lever is a good facsimile of the real lever; however, the lever does not recess between the two half moons.  Nor is the red trigger spring-loaded as in the OEM mechanism.  Despite these aesthetic shortfalls, the landing gear functions well.  The leather skirt is a step in the right direction concerning authenticity

UPPER MIP (Instrument Panel, Glareshield and Lower Panel/Kick Stand)

The panel is made from CNC machined acrylic and the glare shield from injection molded plastic. The panel and glare shields have been attached by screws to a light-weight powder coated aluminum frame which incorporates a 4 inch wide shelf on the rear side. 

The cut-out lettering, which allows the lettering to be back-lit, is very crisp with well defined edges.

The panel has been professionally painted in Boeing grey.  Although the panel is made from acrylic, the use of high quality flat paint removes the sheen that acrylic is renowned for.  In comparison to other plastic-looking panels on the market, the colour and appearance is very true to form.  It looks 'almost; like the OEM panel. and matches the real aircraft parts very well.  Furthermore, FDS apply the paint in several thin layers which makes the coating very resistant to chipping and scratching.

Switches have been mounted in the correct locations and the wiring from these switches has been secured within a wiring lumen or by plastic cable ties.  The switches and knobs replicate those of the real aircraft and have the correct feel, although the general purpose knobs (GPK) do not replicate the exact appearance of the OEM knob.  Where a panel has not been included (not stock B737 configurations) a blanking panel has been fitted.

The soldering work and connections on all switches are excellent; it is more than obvious that the person who did the soldering work is a professional with many years experience.

The gear lever is sturdy and feels solid.  To engage the landing gear, the lever must be pulled out of its recess and pushed up or down.  The detail to the lever is excellent and installation includes the correct-looking fiber sleeve.  The mechanism does not have the spring-loaded trigger; the trigger is a solid cast item attached to the lever.

Annunciator lights (six packs) and various warning lights are all functional; however, pale comparison to OEM parts and other high-end reproductions; they appear 'cheesy'.  The glare shield is strong textured ABS plastic and wraps over the top of the MIP.  A correctly sized chart pocket is screwed to the top of the shield.  The two glares either side of the MIP on the Captain and First Officer side are painted MDF wood and although not have a negative appearance they do not replicate the appearance of the OEM glare which is made from textured foam plastic.

The shelf system, located behind the main instrument panel, is an excellent idea.  The shelf, in addition to providing an area for the FDS monitor stands to be mounted, is a good platform to mount various cards, speakers and other items that may be required.

The FDS bracket, a novel design to hold the display units firmly in place.  The display unit bezel is made from plastic and does not hinge outwards as the real bezel does.  the knobs on the ISFD are not replicated

The lower display modules, which are mounted to the lower area of main panel, are installed using normal Phillips-head screws.  In a real B737, panels and modules are usually secured using DZUS  fasteners or skirted screws.  It would have been a nice touch to have replicated the use of DZUS fasteners on the panels in the lower kick stand.

Display Unit Covers

The protective displays that the computer monitor screens (display units) are made from 1.5 mm thick perspex.  I have found the perspex to be very reflective - especially so if the simulator is located in a well-illuminated room.    

Integrated Back-Lighting (IBL)

Integrated back Lighting (IBL) is the name FDS has coined to refer to their proprietary design in which FDS utilise aircraft bulbs rather than LEDs.  IBL is supplied to illuminate the back lighting in all FDS panels and modules.  

One of the main advantages of a bulb in contrast to that of a LED is the throw of the light and the colour temperature.  The area of coverage from bulbs is relatively even, where the coverage by an LED is more pinpoint and uneven.   The only way to achieve a similar light coverage to bulbs using LEDs is to use several LEDS mounted in close proximity to each other. 

One area that the use of bulbs  excels is the rear illumination of the stencil-cut lettering on the MIP.  Bulbs will completely illuminate the stencil cut-outs where LED lighting will often only illuminate part of the stencil cut-out (unless there are several LEDs).

Bulbs and LEDs have different colour temperatures.  A bulb transmits a warm colour (soft orange hue) whereby a LED transmits a cooler colour that appears more blue in comparison.

All Boeing airframes, with the exception of the newest airframes utilise 5 and 28 volt incandescent bulbs.

The only downside of IBL (if there is one) is that the bulbs generate quite a bit of heat.  The life of a bulb is also less than a LED.

Ground Proximity Panel showing use of Phillips head screws rather than the more usual DZUS fasteners

What the MIP Lacks

The non-use of DZUS fasteners in the lower panel (kick stand) and the failure to use skirted screws has been mentioned.

Stand-by instruments and clocks are not included.  FSD supply a stenciled backing card which is mounted behind the perspex to mimic the look of the yaw dampener, brake pressure, clock and flaps gauge. 

Considering the purchase price of a MIP, and considering the importance of a working flaps gauge, an operational analogue flaps gauge should be a stock item.  

The avionics suite (Sim Avionics) can display virtual stand-by instruments id required.

The speed reference panel and knobs are not functional. The knobs used in the speed reference panel do not replicate the OEM knobs used in the B737; the real aircraft uses double rotary encoder knobs. As with the flaps gauge, these knobs should be functional and, at least shoe some resemblance to the real part.

Software - Interface IT

The software to interface the MIP (InterfaceIT) seems to be well designed and robust.  It does require a learning curve to become proficent with the software, but once proficent the siftware is logical in layout and use.  Installation of the IT software is straightforward.

Additionally, there is a direct link between InterfaceIT and Sim Avionics which makes internal configuration and programming very easy.

Flight Avionics Suite

Duel Seat Training Devices (DSTD) and MIPS configured by Flight Deck Solutions use Sim Avionics as their flight avionics suite.  After you receive your MIP, FDS staff will e-mail to you a file which you import into InterfaceIT.  This file holds the data assignments for the MIP buttons and switches.

Although FDS recommend Sim Avionics, there is no obligation to use this software; the MIP will operate with whatever software you choose.  A seperate post will deal with a review of Sim Avionics.

The rear shelf located behind the MIP and the propriety bracket used to hold the display units (computer screens) firmly in place.  The bracket works exceptionally well and the shelf is very sturdy

Lower Base Structure

The base structure comprises the lower section of the MIP and includes the CDU bay structure and lower display screen.  The structure is made from aluminum which has been professionally powder coated in Boeing grey. 

As with the upper section of the MIP, the attention to detail is obvious.  There are no sharp edges on the CDU bay structure, nor are there gaps where panels attach together.  Screws match their holes correctly.

The DZUS rails that line the internal section of the CDU bay marry perfectly with the DZUS fasteners used to secure the Control Display Unit (CDU/FMC) to the rails.    It does not matter whether a reproduction or OEM CDU unit is used as both will fit perfectly.

The lower display screen, which fits between the two gaps in which the CDUs reside, is identical in shape and manufacture to the upper display unit bezels.  Unlike the three upper bezels in which a standard computer monitor can be mounted, the lower screen requires a smaller monitor which is not an off the shelf item.

clock panel showing backlighting during the day. the fabrication of this panel and button is very good as is the stenciling

Dimensions, 1:1 ratio and Using OEM Parts

The ability of a manufacturer to produce a MIP that is the correct 1:1 ratio to the real item cannot be underestimated.  If an enthusiast is intending to only use instruments and panels produced by that manufacturer, then any size disparity is probably unnoticeable and probably not that important.  However, if OEM parts are to replace reproduction parts, then the base sizing become crucial to the correct and easy fitment of an OEM part.  In this area, the FDS MIP has some shortfalls.

The MIP has a number of holes and gaps that parts reside, for example for the AFDS and flaps gauge.  If the holes are incorrectly matched to the OEM part, either a new panel (aluminum backing plate) will need to be engineered and painted, or the hole may need to be enlarged.  Although enlarging a hole in a MIP is straightforward, the opposite is problematic and requires the design of a new panel.

Unfortunately, many of the holes in the FDS MIP do not correspond to the correct size when fitting OEM parts.  For example, the holes that the AFDS units reside must to be enlarged considerably to enable OEM AFDS units to be fitted.  Likewise, the holes to fit the annunciators need to be enlarged.  The hole that the flaps gauge is housed is far too large and a new panel needs to be designed to gt an OEM flaps gauge.

Detail of the angled shelf used to accommodate the I/O cards.  The multi-voltage computer power supply can also be seen mounted behind the perforated vents.  The terminal block caters to 5 and 12 volts.  The interface card is the FDS SYS card which comes standard with the ICS MIP

Power, System I/O Cards and Cabling

A multi-voltage computer power pack is used to power the MIP and has been mounted at the rear of the lower base structure. 

The position chosen is well suited to internal wiring and allows easy access should a problem develop.

An angled shelf has been engineered to fit immediately behind the CDU bay.  The design of the shelf is intended as an area on which to mount the various interface cards required to operate the simulator.

The interface cards required to operate the MIP have been secured to the angled shelf and all wiring has been expertly soldered or attached via solid electrical clips.  Cabling and connections are of the highest quality.  Each of the wires that are connected to the SYS board has been tagged with a plastic tag which indicates their function; a good idea if you need to change something at a later date or troubleshoot a particular problem.

There has been no compromises with regard to how the staff at FDS wired the MIP - it is beyond reproach.

3mm replacement side stand.  The replacement stand inhibits any movement of the MIP as the structure is not (at the moment) installed within a shell

Base structure (side stands)

The base structure (stand) has been designed to be mounted either directly to a base platform.  The mounting points are numerous holes along the lower angled edge of the stand.  A concern was that the structure would wobble, as it is quite high and made from light-weight aluminum. 

These concerns were short-lived; once each attachment point was secured with a screw the assembly was quite solid.  This said, if you energetically engage the landing gear lever, there is a very slight movement in the upper area of the MIP.  If you are mounting the MIP into a cockpit surround, any movement will cease as it will be attached to the outer skin of the shell.

To counteract any movement, it is a relatively easy matter to fabricate two replacement side stands from a thicker sheet of aluminum (3-5mm).  This will guarantee that there will be no movement when manipulating knobs, the landing gear, etc.

Navigate to this post to read about the replacement side walls.

Communication, Support and Delivery

Communication with FDS was excellent.  E-mails were always answered in a timely manner and Peter and Steven Cos are very professional in their approach. I was continually kept in the loop regarding construction and shipping.

Support if and when required is either via a dedicated forum, e-mail, or if necessary by telephone.  Peter and Steve Cos very approachable and helpful and their support is second to none.  I would go so far as to say that the support that FDS provides cannot be matched.

It is important to note that Flight Deck Solutions is not a mail order company with products in storage waiting to be shipped; products are assembled to order.  This means that often there is a timely wait until you receive your shipment.

The MIP I had delivered to Australia was packed in and attached (screwed) to the floor of a large wooden crate.  It arrived undamaged.

Quick List - Pros and Cons

PROS

  • Well designed & constructed

  • Excellent workmanship (metalwork and wiring)

  • Realistic and highly effective Integrated Back-Lighting (IBL)

  • Good functionality

  • Very clean appearance - wiring and cards favorably positioned

  • 1:1 (or as near possible) to the real MIP (exception if using OEM gauges)

  • Moderate to high attention to detail

  • Robust & functional software (InterfaceIT) if using Sim Avionics avionics suite

  • Excellent paint quality (several layers of paint) that resists chipping and scratching

  • Outstanding support - the best in the industry

CONS

  • No analogue flaps gauge, other than virtual version (rectified by spending more money)

  • No stand-by instruments or clock (rectified by spending more money)

  • Non use of DZUS fasteners in lower panels above 'kick stand' (small things do make a difference)

  • RMI knobs are very low quality

  • Speed reference knobs are very low quality & do not replicate OEM B737 knobs

  • Landing gear lever does not recess behind shield when in down position

  • Landing gear does not utilise the spring trigger as in the real aircraft

  • Section between upper and lower MIP (kick-stand) is not the correct shape.  It should be rounded and not be an angled piece of aluminum

  • Display unit covers are very reflective (easily rectified- remove or replace them with tinted displays)

  • Slightly inaccurate General Purpose Knobs (GPK) - poor stenciling on knobs

  • The MIP is not completely 1:1 and if using OEM parts, some engineering is required to fit OEM parts

  • The MIP is not an exact reproduction and artistic license has been taken in some areas (for example, the section between the upper and lower MIP (kick-stand).  The MIP also lacks various screws and fasteners seen on the OEM MIP

Important Point:

  • If you are intending to add OEM panels, switches and knobs to the FDS MIP, be aware that many of the panels do not fit the FDS MIP.  This is because the MIP frame is not exactly 1:1 with the OEM equivalent.  In some instances (such as when retrofitting panels) the MIP is out by up to 1 cm.  Also be aware that OEM korrys, flaps gauges and some of other avionics will not fit into the precut holes.  You will need to either enlarge the hole or make it smaller.

FDS GPK with backlighting. The knob has a slightly different shape to OEM knobs. the adjustable propriety backlighting is perfect

General Purpose Knobs (GPK)

The GPKs are of high quality, however fail in a number of areas.

The black line is a manually applied adhesive which depending upon which knob you are inspecting, may or may not be quite straight.  Being adhesive, with time the transfer lifts, especially at the ends.  The translucent line between the black outer lines is not as bright as that observed in the real aircraft.  Not all knobs have the transfers correctly aligned.

poor quality lower kickstand knobs. gpk showing excess plastic from manufacture process

The knobs are the incorrect shape and the grub screws are located in the wrong position on the knob.  The knob also does not have an inside metal shroud (circular retainer).  The retainer increases the longevity of the knob as it stops the acrylic from being worn down over time with continual use.

The knobs on the lower kick stand are also of poor quality bearing only a little resemblance to the OEM knobs

The knobs serve a function, but for the price of the MIP, knobs that reflect a more accurate representation would have been appreciated.

fds adf knob. WHY EVEN HAVE THIS AS IT IS NOTHING LIKE THE OEM RMI KNOB

RMI Selector Knobs

The knobs are made from acrylic with a transfer attached.  The knob has no functionality and is attached to the MIP in a recessed hole.  The RMI knob bears no resemblance to the OEM knob and is very poor quality.

Speed reference knobs are very low quality

Speed Reference Knobs (SRK)

The speed reference knobs supplied with the FDS MIP bear no resemblance to the OEM knobs. The OEM knob should be a double rotary encoder knob.  There has been no attempt to replicate this type of knob.

Used Fuel Reset Switch

FDS have used a normal two-way toggle which is incorrect.  There is no similarity to the OEM used fuel reset switch.  The OEM toggle has a large bulbous head and is a specially-designed three-way toggle.

fds Boeing warning system. although functional the displays fall short of replicating the oem items

Autopilot Flight Director System (AFDS) 

Although not an exact replica of the OEM part, FDS has done a good job replicating the functionality of the AFDS.  Unfortunately, if you wish to replace the FDS unit with an OEM AFDS unit, the hole in the backing plate that attaches to the MIP will need to be enlarged considerably to allow correct fitting of the OEM component.

Boeing Warning System (six packs)

Compared to the OEM counterpart, FDS’s offering is lacking. The two warning buttons can be depressed very easily where the OEM buttons are quite firm requiring a good push. The six packs work quite well, however, lack adequate light coverage when a warning is displayed.

Annunciators (korry condition lights)

The FDS MIP uses LED reproduction annunciators (korrys).  The LEDS are illuminated by two 5 volt LED lights which do not provide complete light coverage across the lens plate.  The brightness of the LEDS is also not as bright as the OEM annunciators. 

Furthermore, the hole in the MIP that the korrys reside is a tad on the small side; therefore, if you are intending to replace the reproduction korrys with Original Equipment Manufacture (OEM) annunciators, you will need to engineer the hole to a larger size.  This is unfortunate as a MIP should be manufactured 1:1 to allow reproduction parts to be replaced with OEM parts.

on the oem landing gear the red trigger sits flush with the two half moons

Landing Gear Lever

The landing gear lever requires more explanation.

In the real B737-800 NG the landing gear handle sits closer toward the main instrument panel.  The half circular shield is designed so that the red-coloured gear trigger sits between the two half moon shields when the lever is in the DOWN position.  In the FDS version, the trigger sits too far out from the front of the MIP and the trigger is not protected by the two shields.

Furthermore, the trigger is not spring-loaded as in the OEM mechanism; it is a solid piece of metal.

Lights Test / DIM Switch

A normal two-way momentary toggle is used which is incorrect.  The OEM switch is a three way non-momentary switch which allows the switch to be placed in any one of three positions.  The OEM toggle is also large than a standard toggle switch.

Final Call

The MIP is well made and has been finished with obvious care; parts line up correctly, screw heads have not been burred and paint not chipped.  Wiring, soldering, parts, switches, paint, colour, rotaries, blanking panels and display frames are of the highest quality.  It is obvious you are dealing with a premium product that provides an very good facsimile of a 737-800 instrument panel.

Downside is the lack of any hard-wired gauges, poor quality speed reference and general purpose knobs, lack of DZUS in lower panels, no flaps gauge, and a wrongly positioned landing gear lever (when in the down position).  Another issue is that the MIP is not 1:1 with its OEM counterpart, nor is it a 100% accurate rendition of an OEM MIP. 

This said, for many enthusiasts this will not be an issue as the differences are minor.  If you intend to use OEM parts then some parts of the MIP will need to be fabricated to enable the real parts to fit snugly into the MIP.

Depending upon your end use - a MIP with reproduction gauges, or a MIP skeleton to hang OEM parts - your views will alter.  Certainly, the FDS MIP is not to be discounted as a premium product; it is a pity that FDS did not take a few extra steps to make this MIP the 'Queen of the crop.

The closest rival to the FDS MIP is the MIP manufactured by Fly Engravity and SimWorld.  Other MIPS are available from other companies, but the FDS MIP, although lacking in some areas is superior in many ways. 

Rating is 7.5/10

Please note that this review is my opinion only..  Furthermore, note the date of the review.   Flight Deck Solutions may have updated their MIP after this review has been published. 

  • Thanks to Peter Cos, Flight Deck Solutions for allowing the use of the front image.

NOTE:  Before taking what you read as gospel, check the FDS website in case these shortcomings have been rectified since this post was published.

737 Fuel Management Program

fuel planner user interface

Flight planning is a large part of flying the 737, in real life and virtually.

Yes you can fly with the three fuel tanks full, however, bear in mind that you will not be simulating a real flight.  Airlines rarely fly an aircraft between two locations with a full fuel load, unless it’s required for operational use or safety. 

Fuel is heavy, and the additional weight requires more power and fuel to move between locations.  This equates to an increased expense.  Airlines usually only carry enough fuel to reach their destination, taxi, and one or two alternate airports.

You can calculate the appropriate load sheets, distances between airports, winds, altitudes to be flown, and alternate airports. But this can be time consuming, and often you don’t want to simulate the paper trail that goes hand in hand with getting a 737 into the air. For those keen on paperwork and simulating everything, I recommend the program TOPCAT - Take-Off and Landing Performance Calculation Tool.

Ross Carlson has created a very handy and functional fuel management tool to use.  The program is stand-alone and does not need to be installed into the flight simulator directory or to C://drive/Programs; the software can be installed to and run from any folder including your desktop.   Initially designed to work with the Boeing 737NG developed by Precision Manuals Development Group, the utility works well for other 737 aircraft, provided they have the same operating limitations and fuel tank capacities that the software was designed.

The only issue to be wary of is that the aircraft you are flying matches the same weights as those used by PMDG.

  • Supports 737-600, 737-700, 737-800 and 737-900.

  • Values can be entered and displayed in pounds or kilograms.

  • Reads payload (passenger and baggage) weights via FSUIPC.

  • Calculates en route fuel burn based on cruise altitude and trip distance.

  • Calculates fuel burn to reach alternate airport.

  • Calculates increased or reduced fuel consumption due to forecast winds en route.

  • Allowances for taxi-out fuel burn, holding fuel burn, and minimum landing fuel.

  • Indicates if any parameters exceed aircraft operating limitations.

  • Sets actual fuel levels in your aircraft via FSUIPC.

  • One simple .exe file, no external DLL or data files required.

  • Loads first 1,000 pounds of fuel into the center tank to keep pumps submerged.

  • Accredited for use with registered non-registered copies of FSUIPC.

Operation

I've been using this fuel planner or quite sometime and it works quite well.  I open a flight and then run the fuel planner and change the variables as required.  Then, after I've boarded the fuel I exit the fuel planner program.

The only let down with the program, and this probably is an advanced feature not deemed necessary when the program was developed, is that it doesn't provide %CG which is used in a CDU to determine your takeoff trim.

Search google for PMDG fuel planner and you will find several sites that allow you to download the program.  Alternatively, download the software from the file download tab.

FMC Guide by Bill Bulfer - Review

fmc users guide: required reading

The Control Display Unit (CDU) is the pilot interface to the FMC (Flight Management Computer).  It’s one of the more complex items that real and virtual aviators need to the master.

Historical Context

First introduced on the 737-200 in 1979 as the Performance Data Computer System (PDCS), the Flight Management Computer (FMC) was a technological step forward in in-flight navigation  The PDCS was trailed on two in-service  737-200 series aircraft and crew reports indicated a fuel saving of 2.95% and an increase in trip time (based on  a 71 minute trip).  As a result, the PDCS became a standard fit and over time was developed to be reincarnated as the FMC will see today in the later 737 series aircraft.

The FMC is only one component of the Flight Management System (FMS) which is defined as being capable of four dimensional area navigation (latitude, longitude, altitude & time).  The FMS contains the navigational database. 

Random page from the FMC Guide

Learning CDU Functionality can be Frustrating if not Adequately Trained

Many virtual aviators blunder through the CDU line detents trying to understand what they do; often failing.  For the most part, the uninitiated will blame buggy software  for the aircraft’s sudden dive or climb in response to a CDU command. The algorithm behind the functionality of a CDU is not simplistic – it is complex, and mastering the  CDU is not achieved overnight.

Real-world pilots attend lengthy pre-flight classes to understand the use of the CDU, and although there are several training guides available on the Internet, many are not peer-reviewed and fall short of being comprehensive.

Software Variations

One of the reasons that learning the CDU can be tiresome, is that the software that provides the intelligence behind the Flight Management System, has over time been upgraded to take into account technological advances.  This is in addition to there being several software variants available. Software variants have been developed to cater towards individual airline options; an airline may want, or not want a particular function available to its flight crews. 

Precision Manual Development Group (PMDG) produces a very good section in one of their manuals that deals with CDU usage  (PMDG 737 FMC Guide).  Tom Metzinger and Fred Clausen have also documented in their excellent tutorials, a segment on using the PMDG style variant CDU (PMDG use the latest software version). I suggest googling on the Internet to see if you can find these documents.

Invest in Education - FMC Guide

If you are serious about your virtual flying or have a bent for technology, I strongly recommend you purchase Captain Bill Bulfer’s FMC Guide. 

FMC Guide discussing fixed waypoints

The guide is a real-world guide designed for 737 pilots, and not only provides detailed information on a vast array of FMC commands, screens and nuances, but also examines many of the options relating to specific software versions. 

The guide is a high quality production and has been written in a style that provides clear and a concise guidance.  It can be purchased either in colour (recommended) or in black and white. 

Like anything in life, you get out what you put in.  With a good working knowledge gained from the study of this text, you will soon discover that the carrying out a procedural turn with altitude and speed restrictions, before flying a complex STAR and approach is not that difficult to fathom.

The information in this guide will allow you to be confidently and correctly operate the CDU.

To purchase a copy you can either navigate to Leading Edge Publishing.

I will be reviewing another of Bill Bulfer's text in the near future - The 737 Cockpit Companion.

My Rating 10/10

Please note that this review is not endorsed.